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Abstract

This dissertation focuses on developing mixed effects models for large scale and complex data.

Our motivating applications involve areas where this data is common, including epidemiological studies,

environmental sciences, and genetics. Two key attributes for most of the modeling techniques discussed in

this dissertation are that they scale easily to large data and that they achieve full variable selection, which

is often a desirable trait in mixed effects models. These attributes are primarily handled in two ways. The

first is with carefully constructed latent variables that we introduce to make the posterior distributions more

tractable. This allows a Markov chain Monte Carlo (MCMC) sampler to be carried out with Gibbs steps,

which results in efficient computation of posterior estimates, especially in large data scenarios. The second

is through a decomposition of the covariance matrix associated with the random effects and with the use of

spike and slab priors, we can achieve full variable selection in not only the fixed effects, but also the random

effects. The finite sample performance of our techniques are assessed through extensive simulations and

are used to analyze motivating data sets, which includes data from group testing procedures, human disease

surveillance studies, and genetics.
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Chapter 1

Introduction

Modern advancements in technology have allowed experimenters to gather and store larger amounts

of data. While this advancement is favorable, it comes at the expense of more complicated modeling for

statisticians. For example, special modeling techniques are required for the large p small n problems, or

efficient modeling is necessary when either p or n are excessively large. These situations are practically

ubiquitous in high dimensional analyses. High dimensional data is common in a variety of applications,

including epidemiological studies, environmental sciences, and genetics. While more data can be a good

thing, typical issues with high dimensional data arising from experimental designs in these areas are the

number of predictors being considered (i.e., large p) or the complexity of the data. For example, group

testing data arises in epidemiological studies, where the observed variables are often not on an individual

level and also are error-contaminated observations due to imperfect testing. The latter issue is problematic as

traditional binary data models are no longer valid, and the former issue further exacerbates the complexity of

the required modeling framework. The Bayesian paradigm has proven most beneficial in these complicated

models, and as such is used throughout this dissertation.

This dissertation primarily handles these complicated data structures in two ways. The first is that

we utilize clever data augmentation strategies that make posterior distributions more tractable. For example,

in binary regression, the addition of a carefully constructed latent variable allows the logistic or probit link

function to be written into a normal distribution. The structure of these latent variables is inherently tied to

the link function being used; e.g., follow Polson et al. [2013] and Albert and Chib [1993] for the logistic link

and probit link, respectively. This allows model fitting to be carried out with primarily Gibbs steps, which

provides for an efficient modeling framework that scales well to larger data. The second method used often in
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this dissertation is variable selection. In complicated models, such as in mixed effects models, this becomes

a major task as the dimensions of the parameter space grow quickly due to the inclusion of random effects.

Chapter 2 develops a Bayesian mixed effects model that achieves full variable selection (i.e., in both fixed

effects and random effects). Motivated by Chen and Dunson [2003], the variable selection within the random

effects is achieved by placing spike and slabs priors on diagonal elements of a matrix that is the result of a

Cholesky decomposition of the covariance matrix of the random effects.

In high dimensions, dimension reduction either before or during model fitting enables the analysis

of large amounts of data. For example, Chapter 5 develops a two-phase methodology where the first phase

prescreens the predictors to reduce it to a more promising set of candidates that are then jointly analyzed

in the second phase. However, in some situations, it is more beneficial to jointly analyze all predictors

simultaneously due to possible correlations and interactions. Chapter 4 develops a computationally efficient

expectation-maximization that is motivated by Armagan et al. [2013a] and jointly analyzes large amounts of

predictors by performing dimension reduction during the model fitting process. Due to the penalty structure

of the prior used on the regression coefficients, once a regression coefficient is dropped from the model (i.e.,

is set to zero), it cannot return.

The remainder of this dissertation is organized as follows. Chapter 2 develops a Bayesian mixed

effects logistic regression model for group testing data, where individuals of a population are screened for

an infectious disease. Modern group testing procedures are moving towards multiplex testing assays, which

have the ability to test for multiple diseases simultaneously. To account for this, Chapter 3 extends this model

to a multivariate setting, which incorporates possible correlations between diseases. Chapter 4 develops a

Bayesian linear mixed effects model that relates single-nucleotide polymorphisms (SNPs) of rice plants to the

amount of yield produced. Chapter 5 involves developing a Bayesian logistic regression model to associate

human SNPs and covariate information to colorectal cancer, where the number of predictors in the model is

much larger than the sample size. We conclude with Chapter 6, a brief discussion of this dissertation.
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Chapter 2

From mixed effects modeling to spike

and slab variable selection: A Bayesian

regression model for group testing data

2.1 Introduction

Group testing involves taking specimens (e.g., blood, urine, swabs, etc.) from different individuals

and forming a pooled specimen that is then tested for disease. In most group testing protocols, if a pooled

specimen tests negatively, then all individuals are declared to be disease free at the expense of a single

diagnostic test. In contrast, if a pooled specimen tests positively, the pool is resolved algorithmically to

determine which individuals are positive. Dorfman [1943] is credited with conceptualizing the group testing

idea during World War II to screen military recruits for syphilis. Since then, group testing, or “pooling”,

has become a mainstream approach to screen large populations for multiple diseases. The primary reason

for pooling is to save money. For example, the State Hygienic Laboratory (SHL) at the University of Iowa

has reported savings of approximately $3.1 million during a recent 5-year period after adopting a variant

of Dorfman’s protocol to screen Iowa residents for chlamydia and gonorrhea; see Tebbs et al. [2013] and

McMahan et al. [2017]. Pooling biospecimens through group testing arises in other applications, including

testing for HIV and HCV [Sarov et al., 2007, Krajden et al., 2014], environmental testing [Heffernan et al.,

2014], and drug discovery [Hughes-Oliver, 2006].
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While testing pools can be far more cost effective than performing individual tests, it also leads to

a more complicated data structure. This is true because specimens are pooled and hence individual-level re-

sponses may never be observed. Recent statistical research has focused on developing regression methods to

model the probability of disease for individuals based on pooled outcomes; e.g., see Vansteelandt et al. [2000],

Bilder and Tebbs [2009], Huang [2009], Delaigle and Meister [2011], and Delaigle et al. [2014]. All of the

aforementioned regression methods are designed to analyze test results arising from assaying the initially

formed (master) pools; i.e., pools formed by assigning each individual to exactly one initial pool for test-

ing. As a consequence, these methods cannot incorporate retesting information that becomes available when

positive pools are resolved [Kim et al., 2007] or when quality control steps are implemented [Gastwirth and

Johnson, 1994, Johnson and Gastwirth, 2000]. To incorporate retesting information, Xie [2001] developed

an expectation-maximization algorithm to estimate the individual-level probability of disease for general re-

gression models. Wang et al. [2014] developed a semiparametric framework to estimate single-index models.

Most recently, McMahan et al. [2017] proposed a Bayesian approach to estimate generalized linear models

while incorporating historical information on disease prevalence and uncertainty in assay performance.

At most public health laboratories like the SHL, individual specimens arrive at the lab from different

locations throughout a particular geographic region. For example, in Iowa, specimens are collected at differ-

ent types of clinics (e.g., family planning clinics, STD clinics, etc.) in multiple locations from all over the

state and are then shipped to the SHL for testing. Given the vast differences among clinic types and the ad-

ditional differences between rural and metropolitan areas, it is natural to suspect that heterogeneity may exist

from location to location. However, when individual specimens are pooled together, it becomes a significant

challenge to account for this source of variability while also estimating covariate effects like age, gender, race,

and sexual history. In fact, most previous regression methods for group testing data, such as those outlined

above, are not able to incorporate the effects due to observing data from different locations−especially when

individual specimens from different locations are pooled together.

In this article, we develop a Bayesian generalized linear mixed model approach for group testing

data which uses fixed effects to describe the population-level mean structure and random effects to account

for differential variability among population subgroups. Our work generalizes the random effects model-

ing techniques for group testing data proposed by Chen et al. [2009] and simultaneously offers a far more

flexible approach for data analysis. First, by taking a Bayesian point of view, we can incorporate historical

information about disease prevalence, and our approach allows assay accuracy probabilities to be estimated

from the observed data. Second, a limitation of Chen et al. [2009] is that it can incorporate only master pool
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responses; i.e., it does not allow one to include additional retests that will be performed for disease classifi-

cation purposes. On the other hand, our estimation framework is flexible and, as in McMahan et al. [2017],

it can accommodate data from any group testing protocol as well as quality control screening procedures

[Gastwirth and Johnson, 1994, Johnson and Gastwirth, 2000]. Third, and perhaps most limiting, the methods

in Chen et al. [2009] allow only for pools to consist of individuals from within the same location. In prac-

tice, this can be markedly prohibitive because individual specimens are often pooled sequentially based on

their arrival date for testing. Furthermore, for those locations performing a small number of tests, it may be

impractical to wait and to pool within location. Our approach removes this limitation and includes “pooling

within location” as a special case. Finally, given the complexity of the considered mixed effects model, we

use spike and slab priors to perform variable selection−both within the fixed and random effects components.

In particular, three of the most common spike and slab priors are considered with details of implementation

under each being provided. No existing group testing regression procedure has considered such an automated

variable selection technique; i.e., for both fixed and random effects. For implementation purposes, a compu-

tationally efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed which can estimate

the proposed model.

Subsequent sections of this article are organized as follows. Section 2 provides preliminary infor-

mation regarding the proposed mixed effects model, the modeling assumptions, and the derivation of the

observed data likelihood. Section 3 presents the specifics of the approach, including prior model specifi-

cations and data augmentation steps used to construct an efficient posterior sampling algorithm. Section 4

outlines the development of the full conditional distributions. Section 5 reports the results of an extensive

numerical study conducted to assess the performance of the proposed approach. Section 6 presents an analy-

sis of chlamydia testing data collected by the SHL in Iowa. Section 7 concludes with a summary discussion.

Additional technical details and additional simulation results are provided in Appendix A.

2.2 Notation and preliminaries

Consider a setting in which N individuals are screened for an infectious agent by a group testing

protocol. As a part of this process, each of theN individuals visit one ofK distinct clinics, where a specimen

(e.g., blood, urine, saliva, etc.) is collected. Testing is then performed either at the clinic site or at a regional

laboratory; e.g., the SHL in Iowa. Note the former scenario would mandate pooling of individuals within

clinic sites while the latter allows for pooling across sites, with our methodology being applicable in either
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case. Let Ỹi denote the true infection status of the ith individual, for i = 1, ..., N , with Ỹi = 1 indicating

that the individual is truly positive and Ỹi = 0 otherwise. Furthermore, let xi = (1, xi1, ..., xi,q1−1)′ and

ti = (1, ti1, ..., ti,q2−1)′ denote vectors of covariate values taken on the ith individual which correspond to

fixed and random effects, respectively, where ti is a subvector xi. We assume throughout that individuals’

infection statuses are conditionally independent given the covariate information and the random effects. The

individuals’ true infection statuses (i.e., the Ỹi) are never observed due to the effect of imperfect testing,

while the covariate information for each individual is observed. For ease of exposition, we aggregate the

individuals’ infection statuses as Ỹ = (Ỹ1, ..., ỸN )′ and denote X = (x1, ...,xN )′ and T = (t1, ..., tN )′ as

the design matrices.

The goal of this work is to relate the individuals’ latent infection statuses to their covariate values

through the following generalized linear mixed model

g−1{P (Ỹi = 1 | β,γk(i))} = x′iβ + t′iγk(i), (2.1)

where g−1(·) is a known link function, β is a q1-dimensional vector of fixed effects, γk(i) := γk if the ith

individual presented at the kth clinic, and γk is a q2-dimensional vector of clinic-specific random effects,

for k = 1, ...,K. It is assumed that the γk are independent and identically distributed and follow a mean

zero multivariate Gaussian distribution with covariance matrix D; i.e., γk
iid∼ N(0,D). Note, to track clinic

membership, herein we adopt the functional notation k(·) and specify that k(i) = k if the ith individual

presented at the kth clinic.

A typical challenge that arises in mixed modeling involves the selection of both the fixed and random

effects components, which is tantamount to selecting the proper subsets of the available covariates to be

retained in the final model. To accomplish this task, we adopt spike and slab priors [George and McCulloch,

1993, 1997, Kuo and Mallick, 1998]. These specifications proceed as usual for the fixed effects and follow

the proposal of Chen and Dunson [2003] for the random effects, which requires a reparameterization of the

proposed model. The reparameterized model is

g−1{P (Ỹi = 1 | β,λ,a,bk(i))} = x′iβ + t′iΛAbk(i), (2.2)

where bk(i) := bk if the ith individual presented at the kth clinic, bk
iid∼ N(0, I), I is the identity matrix, Λ

is a non-negative diagonal q2× q2 matrix, and A is a q2× q2 lower triangular matrix with unit main diagonal
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elements and free elements given by aml for l = 1, ..., q2 − 1;m = l + 1, ..., q2. For ease of exposition,

we introduce λ = (λ1, ..., λq2)′ such that Λ = diag(λ) and a which denotes the vector of free elements of

the matrix A; i.e., a = (aml : l = 1, ..., q2 − 1;m = l + 1, ..., q2)′. Note that the matrices Λ and A are

obtained via a modified Cholesky decomposition and satisfy D = ΛAA′Λ. Under this reparameterization,

if λl (the lth diagonal element of Λ) is zero, then so is the lth diagonal element of D. That is, if λl = 0, then

the variance of the lth random effect is zero, which is equivalent to dropping the lth random effect from the

model. Thus, to perform variable selection for the random effects, the proposed methodology places spike

and slab priors on each λl. Our approach also models the aml values, which allows for the estimation of D

without imposing any prior form or structure.

The observed data that arises from implementing a group testing protocol can be quite complex.

First of all, there are many protocols available for use [e.g., see Dorfman, 1943, Phatarfod and Sudbury, 1994,

Kim et al., 2007, Kim and Hudgens, 2009]. Secondly, in an effort to reduce testing cost, a given protocol

often requires that individuals be tested in multiple (possibly overlapping) pools and may even mandate

confirmatory testing [Gastwirth and Johnson, 1994, Johnson and Gastwirth, 2000]. Thus, to provide a general

framework which can incorporate and account for the complexity of data observed from implementing any

group testing protocol, we define the index set Pj ⊂ {1, ..., N} which identifies the individuals contributing

to the jth pool, for j = 1, ..., J . Let Z̃j denote the true status of the jth pool, under the convention that the

pool is positive (Z̃j = 1) if it contains at least one infected individual and negative otherwise (Z̃j = 0); i.e.,

Z̃j = I
(∑

i∈Pj
Ỹi > 0

)
. Like the individuals’ true statuses, the Z̃j’s are unobserved due to the effect of

imperfect testing. Instead, we observe the diagnosed status Zj which can be viewed as an error-contaminated

version of Z̃j , with Zj = 1 indicating that the jth pool tested positively and Zj = 0 otherwise. To quantify

the effect of imperfect testing, let Sej = P
(
Zj = 1 | Z̃j = 1

)
and Spj = P

(
Zj = 0 | Z̃j = 0

)
denote

the sensitivity and specificity, respectively, of the assay for the jth pool. We allow Sej and Spj to be pool

specific, thus allowing for the potential use of different types of assays and/or the potential effect that pool

size (i.e., the cardinality of Pj) may have on an assay’s performance.

To relate the individual-level model in (2.2) to the observed testing outcomes Z = (Z1, ..., ZJ)′, it

is assumed that the testing responses in Z are conditionally independent given Z̃ = (Z̃1, ..., Z̃J)′ and that the

conditional distribution Z | Z̃ does not depend on the covariates. Under these assumptions, the conditional
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distribution of Z can be written as

π(Z | β,λ,a,b) =
∑

Ỹ∈{0,1}N

[
J∏
j=1

{
S
Zj

ej (1− Sej)1−Zj

}Z̃j
{

(1− Spj)ZjS
1−Zj

pj

}1−Z̃j

×
N∏
i=1

g(ηi)
Ỹi
{

1− g(ηi)
}1−Ỹi

]
, (2.3)

where ηi = x′iβ + t′iΛAbk(i) and b = (b1, ...,bK)′. Note, on the right hand side of (2.3) we are marginal-

izing the joint conditional distribution of the observed testing responses and the latent statuses of the individ-

uals, denoted by π(Z, Ỹ | β,λ,a,b), over Ỹ; i.e., π(Z | β,λ,a,b) =
∑

Ỹ∈{0,1}N π(Z, Ỹ | β,λ,a,b).

Unfortunately, (2.3) involves a very high dimensional sum effectively rendering direct numerical evaluation

infeasible. To circumvent this issue, a two-stage data augmentation procedure in Section 3.2 is proposed

which leads to an efficient posterior sampling algorithm.

2.3 Data augmentation and prior specification

The full hierarchy of the proposed model is

Ỹi | ηi ∼ Bernoulli{g(ηi)}, ηi = x′iβ + t′iΛAbk(i)

βq | vq ∼ (1− vq)πspike(βq) + vqπslab(βq), q = 1, ..., q1

λl | wl ∼ (1− wl)πspike(λl) + wlπslab(λl), l = 1, ..., q2

a ∼ N(m0,C0),

bk ∼ N(0, I), k = 1, ...,K

vq | τvq ∼ Bernoulli(τvq ), q = 1, ..., q1

wl | τwl
∼ Bernoulli(τwl

), l = 1, ..., q2

τvq ∼ Beta(av, bv), q = 1, ..., q1

τwl
∼ Beta(aw, bw), l = 1, ..., q2,

where πspike(·) and πslab(·) denote the “spike” and “slab” components, respectively, of our spike and slab

prior (for further details see Section 3.1) and m0, C0, av , aw, bv , and bw are hyperparameters. In specifying

these hyperparameters, the prior on a should be made to be informative (e.g., specified with m0 = 0 and

C0 = 0.5I) to avoid imposing a strong a priori correlation between any two random effects; for further

details, see Chen and Dunson [2003]. Further, we also assume the a priori independence of the βq’s and the
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λl’s. Proceeding in this fashion greatly simplifies the calculations necessary for posterior sampling and is

common in the literature; e.g., see George and McCulloch [1993], George and McCulloch [1997], Kuo and

Mallick [1998], and Chen and Dunson [2003].

2.3.1 Spike and slab prior

The model hierarchy presented thus far provides a general representation of the spike and slab prior.

To ground the description of our approach and to illustrate our methodology, we discuss three commonly used

spike and slab priors: the stochastic search variable selection (SSVS), the normal mixture inverse gamma

(NMIG), and the Dirac spike, see George and McCulloch [1993], George and McCulloch [1997], and Kuo

and Mallick [1998], respectively.

Following the work of George and McCulloch [1993], the SSVS approach used herein makes use of

spike and slab priors of the following form:

βq | vq ∼ N(0, r(vq)φ
2
q) (2.4)

λl | wl ∼ TN
(
0, r(wl)ψ

2
l , (0,∞)

)
, (2.5)

where r(·) is a function serving as a binary switch (i.e., r(0) = r and r(1) = 1) that transitions the prior

between the spike and the slab, φ2q and ψ2
l are specified variance components, and TN(µ, ψ2, (a, b)) denotes

the usual truncated normal distribution which arises from restricting the support of a N(µ, ψ2) distribution

to the interval (a, b). In the specification of (2.4) and (2.5), one should provide large values of φ2q and ψ2
l

and a small value for r. In particular, these specifications should be made such that r−1 is sufficiently larger

than the variance components; i.e., r−1 >> φ2q and r−1 >> ψ2
l ; for further discussion, see Wagner and

Duller [2012]. Proceeding in this fashion leads to a flat slab and a spike that is concentrated around zero. It

is important to note that specifying appropriate values of the variance components can, in some instances, be

challenging and moreover has the potential to greatly influence the analysis.

To avoid specifying the variance components, one could instead use the NMIG prior specification

outlined in George and McCulloch [1997] and Ishwaran and Rao [2003]. This approach proceeds identically

to that of SSVS with the exception that the variance components are viewed as unknown quantities and an

inverse gamma prior is specified for them. That is, φ2q ∼ Inv-Gamma(aφ, bφ) and ψ2
l ∼ Inv-Gamma(aψ, bψ).

This addition to the hierarchy removes the need to specify these nuisance parameters and allows one to esti-

mate them through data driven means. One still must specify the value of r; i.e., the proportional difference
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between the variance components of the spike and slab densities. Experience suggests that the selection of

r tends to impact the spike distribution far more than the slab, with the model selection process being too

liberal when r is chosen too large and vice versa.

To avoid specifying r, a Dirac delta function could be used for the spike; see Kuo and Mallick

[1998] and Wagner and Duller [2012]. This can be viewed as a limiting case of SSVS where the variance

of the continuous spike distribution is driven to zero; i.e., r → 0. In this situation, vq = 0 if and only if

βq = 0 and similarly for wl and λl. Although this seems favorable, it also introduces an absorbing state in

the Markov chain. To handle this issue, rather than sampling the binary variables from their full conditional

distributions, β is integrated out when updating v = (v1, ..., vq1)′ and λ is integrated out when updating

w = (w1, ..., wq2)′. Thus, to develop a computationally efficient posterior sampling algorithm, one must

be able to analytically marginalize the posterior distribution over both β and λ. The ability to do so is

inherently tied to the link function being used. Fortunately, this can be accomplished under both the probit

and logistic link functions after a series of data augmentation steps; this process is outlined in Section 3.2.

The distribution for the slab can take on any diffuse continuous distribution. To closely mimic the slab priors

in SSVS and NMIG, we take a priori the βq’s to be independent with slab component N(0, φ2q) and the λl’s

to be independent with slab component TN
(
0, ψ2

l , (0,∞)
)
, where φ2q and ψ2

l are again specified to be large.

2.3.2 Data augmentation

To facilitate the development of an efficient posterior sampling algorithm, a two-stage data aug-

mentation procedure is proposed which focuses on implementation under both the probit and logistic link

functions. In the first stage, we introduce the individuals’ true statuses Ỹ as latent random variables and

consider the joint conditional distribution of the observed testing responses and the latent statuses of the

individuals, which is

π(Z, Ỹ | β,λ,a,b) =

J∏
j=1

{
S
Zj

ej (1− Sej)1−Zj

}Z̃j
{

(1− Spj)ZjS
1−Zj

pj

}1−Z̃j

×
N∏
i=1

g(ηi)
Ỹi
{

1− g(ηi)
}1−Ỹi

.

In the second stage, a carefully constructed latent random variable, ωi, is introduced for each of the individ-

uals. Under the probit and logistic link functions, these random variables obey specifically structured normal

and Pólya-Gamma distributions, respectively; for further details, see Albert and Chib [1993] and Polson et al.
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[2013]. In either case, this stage yields the following joint conditional distribution

π(Z, Ỹ,ω | β,λ,a,b) ∝
J∏
j=1

{
S
Zj

ej (1− Sej)1−Zj

}Z̃j
{

(1− Spj)ZjS
1−Zj

pj

}1−Z̃j

× exp

{
−1

2
(h− η)′Ω(h− η)

} N∏
i=1

ξ(ωi), (2.6)

where ω = (ω1, ..., ωN )′ and η = (η1, ..., ηN )′. Under the probit link, h = (ω1, ..., ωN )′, Ω = I,

and ξ(ωi) = I(ωi ≥ 0, Ỹi = 1) + I(ωi < 0, Ỹi = 0). Under the probit link, ξ(ωi) acts to con-

trol the support of ωi such that given Ỹi = 0 or 1 results in ωi being constrained to (−∞, 0) or (0,∞),

respectively. Under the logistic link, h = (κ1/ω1, ..., κN/ωN )′, κi = Ỹi − 1/2, Ω = diag(ω), and

ξ(ωi) = f(ωi | 1, 0) exp{κ2i /(2ωi)}, where f(ωi | a, b) denotes the Pólya-Gamma density with parame-

ters (a, b); see Polson et al. [2013].

2.4 Posterior computation and inference

To facilitate estimation and inference, a posterior sampling algorithm consisting solely of Gibbs

steps is constructed. In what follows, the necessary full conditional distributions used in this algorithm are

provided. A symbolic representation of the entire posterior sampling algorithm is provided in Appendix A.1.

Attention is first turned to the latent random variables introduced through the data augmentation pro-

cedure. The full conditional distribution of the individuals’ latent statuses is given by Ỹi | Ỹ−i,Z,β,λ,a,bk(i) ∼

Bernoulli{p?i1/(p?i0 + p?i1)}, where

p?i1 = g(ηi)
∏
j∈Ii

S
Zj

ej (1− Sej)1−Zj

p?i0 = {1− g(ηi)}
∏
j∈Ii

{
S
Zj

ej (1− Sej)1−Zj

}I(sij>0){
(1− Spj)ZjS

1−Zj

pj

}I(sij=0)

,

sij =
∑
i′∈Pj : i′ 6=i Ỹi′ , and the index set Ii = {j : i ∈ Pj} keeps track of the indices of the pools to which

the ith individual contributed. We also adopt the convention that V−i represents the vector V after removing
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the ith component. The full conditional distribution of ωi is link function dependent and is given by

ωi | Ỹi,β,λ,a,bk(i) ∼


TN{ηi, 1, (0,∞)}, if Ỹi = 1,

TN{ηi, 1, (−∞, 0)}, if Ỹi = 0,

or

ωi | β,λ,a,bk(i) ∼ PG(1, ηi),

under the probit and logistic link, respectively, where PG(a, b) denotes the Pólya-Gamma distribution with

parameters (a, b); see Polson et al. [2013].

We now describe how to sample the fixed and random effects. Focusing on the quadratic form in the

exponential in (2.6), we have that

(h− η)′Ω(h− η) =

N∑
i=1

(hi − ηi)2Ωii

=

N∑
i=1

(hi − x′iβ − t′iΛAbk(i))
2Ωii

=

N∑
i=1

(hβi − x′iβ)2Ωii = (hβ −Xβ)′Ω(hβ −Xβ),

where Ωii is the ith diagonal element of Ω, hβi = hi − t′iΛAbk(i), and hβ = (hβ1, ..., hβN )′. Thus, it

is easy to see that under the SSVS and NMIG spike and slab priors, the full conditional distribution of β is

given by

β | Ỹ,ω,λ,a,b,v ∼ N
{(

X′ΩX + Φ−1
)−1

X′Ωhβ,
(
X′ΩX + Φ−1

)−1}
,

where Φ = diag
(
r(v1)φ21, ..., r(vq1)φ2q1

)
. Under the Dirac spike, the full conditional distribution of βq

is degenerate at 0 if vq = 0, while the non-zero elements of β, say βv , have the following normal full

conditional

βv | Ỹ,ω,λ,a,b,v ∼ N
{(

X′vΩXv + Φ−1v
)−1

X′vΩhβ,
(
X′vΩXv + Φ−1v

)−1}
,

where Xv is the design matrix consisting of those columns of X corresponding to non-zero elements of v and

Φv is the diagonal matrix formed by retaining the diagonal elements of Φ = diag(φ21, ..., φ
2
q1) corresponding
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to the non-zero elements of v. Due to the data augmentation steps described above, one can also obtain the

following full conditionals

λl | Ỹ,ω,β,λ−l,a,b, wl ∼ TN{µλl
(wl), σ

2
λl

(wl), (0,∞)}

a | Ỹ,ω,β,λ,b ∼ N(µa,Σa)

bk | Ỹ,ω,β,λ,a ∼ N(µbk
,Σbk

),

where the specific forms of these distributions are provided in Appendix A.1. Sampling these parameters is

equivalent to sampling the random effects as well as the covariance matrix of the distribution of the random

effects.

For completion, the full conditional distributions of vq and wl are Bernoulli, with the success prob-

ability depending on the specified spike and slab prior; see Appendix A.1. The full conditional distribu-

tion for the mixing weights τvq and τwl
are conveniently τvq | vq ∼ Beta(av + vq, 1 − vq + bv) and

τwl
| wl ∼ Beta(aw + wl, 1 − wl + bw), respectively. Finally, under the NMIG prior, the full conditionals

of the variance parameters are φ2q | βq, vq ∼ Inv-Gamma
(
aφ + 1/2, bφ + β2

q/{2r(vq)}
)

and ψ2
l | λl, wl ∼

Inv-Gamma
(
aψ + 1/2, bψ + λ2l /{2r(wl)}

)
.

Up until this point, the assay accuracies (i.e., Sej and Spj) have been assumed to be known. When

these quantities are unknown, we may estimate them along with the rest of the model parameters following

the approach outlined in McMahan et al. [2017]. Briefly, this approach allows for different assays to be used

throughout the testing process (e.g., screening and confirmatory testing) and/or can account for the effect

of pool size on the accuracy of the assay; i.e., sensitivity and specificity might change with the pool size.

Define the index setMm which identifies the indices of the pools which were tested by the mth assay, for

m = 1, ...,M . Further, let Se(m) and Sp(m) denote the sensitivity and specificity of the mth assay such that

Sej = Se(m) and Spj = Sp(m) for all j ∈Mm. Under these conventions, (2.6) can be written as

π(Z, Ỹ,ω | β,λ,a,b,Se,Sp) ∝
M∏
m=1

∏
j∈Mm

{
S
Zj

e(m)(1− Se(m))
1−Zj

}Z̃j
{

(1− Sp(m))
ZjS

1−Zj

p(m)

}1−Z̃j

× exp

{
−1

2
(h− η)′Ω(h− η)

} N∏
i=1

π(ωi),

where Se = (Se(1), ..., Se(M))
′ and Sp = (Sp(1), ..., Sp(M))

′. Given the form of the conditional distri-

bution above, independent beta priors are a natural choice; i.e., Se(m) ∼ Beta(ae(m), be(m)) and Sp(m) ∼
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Beta(ap(m), bp(m)). These specifications lead to the following full conditionals

Se(m) | Z, Ỹ ∼ Beta
(
a?e(m), b

?
e(m)

)
Sp(m) | Z, Ỹ ∼ Beta

(
a?p(m), b

?
p(m)

)
,

where a?e(m) = ae(m) +
∑

j∈Mm

ZjZ̃j , b?e(m) = be(m) +
∑

j∈Mm

(1 − Zj)Z̃j , a?p(m) = ap(m) +
∑

j∈Mm

(1 −

Zj)(1 − Z̃j), and b?p(m) = bp(m) +
∑

j∈Mm

Zj(1 − Z̃j). The other posterior distributions are left unchanged

up to acknowledging dependence on the testing accuracies and accounting for the slight change in notation.

2.5 Simulation

To investigate the performance of our regression and variable selection methods, we designed a

simulation study which emulates the primary features of our Iowa data application in Section 6. To this end,

K = 50 clinic sites were conceptualized and the infection statuses for 100 individuals within each of these

sites were generated; i.e., N = 5000. This sample size is roughly a third of the sample size available in our

data application. The individuals’ true statuses were generated according to the following model

g−1{P (Ỹi = 1 | β,λ,a,bk(i))} = x′iβ + t′iΛAbk(i), for i = 1, ..., N,

where g−1(·) denotes the probit link, β = (−3,−1.5, 0.5, 0.25, 0, 0)′, λ = (1, 0.75, 0.25, 0, 0, 0)′, a =

(1, 0.5, 0.7, 0, ..., 0)′, bk(i) = bk if individual i presented at clinic site k, and bk
iid∼ N(0, I). The covariate

vectors xi and ti are taken to be equal and are standardized versions of x∗i = (1, x∗i1, x
∗
i2, x

∗
i3, x

∗
i4, x

∗
i5)′,

where x∗i1, x
∗
i5 ∼ N(0, 1) and x∗i2, x

∗
i3, x

∗
i4 ∼ Bernoulli(0.5). Under these specifications, the generating

model consists of four non-zero fixed effects (one intercept and three slopes) as well as three non-zero random

effects (one intercept and two slopes). The parameter configurations above provide for an overall prevalence

of approximately 9%, which is in keeping with the motivating data application. This model was used to

generate 1000 independent data sets.

To generate testing outcomes, we implement three group testing protocols; namely, master pool

testing (MPT), Dorfman testing (DT), and array testing (AT). Briefly, under MPT, each individual is assigned

to exactly one master pool which is tested and no further testing is performed regardless of the outcome.

DT completes the decoding process initiated by MPT by retesting all individuals in positive master pools.
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Similarly, AT completes decoding in two-stages, but unlike DT it starts by assigning individuals to an array.

In the first stage, AT tests pools formed by combining individuals who share a common row or column. The

second stage retests individuals identified to be likely positives; e.g., individuals residing at the intersection

of positive rows and columns. For the specific retesting protocol adopted for AT, see Kim et al. [2007].

Following the pooling practices used in the motivating example, we consider implementing MPT and DT

using master pools of size 4 and AT using 4×4 arrays. For comparative purposes, individual testing (IT) was

also implemented.

For each of the 1000 individual-level data sets, we simulate IT, MPT, DT and AT. To implement

the group testing protocols, individuals were randomly assigned to pools (arrays), so that individuals would

be pooled across sites rather than within sites. Proceeding in this fashion poses the most difficult estimation

configuration; that is, individuals within the same pool have different random effects. Moreover, this mirrors

large-scale surveillance studies such as the Iowa chlamydia application in Section 6. Under all testing proto-

cols, the testing response for the jth pool was simulated as Zj | Z̃j ∼ Bernoulli
{
SejZ̃j+(1−Spj)(1−Z̃j)

}
,

where Z̃j = I
(∑

i∈Pj
Ỹi > 0

)
. Two different simulation settings are considered regarding the testing accu-

racies. In the first setting, sensitivity and specificity are assumed to be known and are set to be Sej = 0.95 and

Spj = 0.98 for all j = 1, ..., J . The second setting considers two assays, where the first (m = 1) is used to test

pools and the second (m = 2) is used for individual-level testing with Se = (Se(1), Se(2))
′ = (0.95, 0.98)′

and Sp = (Sp(1), Sp(2))
′ = (0.98, 0.99)′. Under this setting, we assume that these accuracies are unknown

and have to be estimated along with the other model parameters. In the second setting we only consider DT

and AT since both protocols mandate both pool and individual-level testing.

We assess the performance under all three spike and slab priors described in Section 3; we set m0 =

0,C0 = 0.5I, and used flat priors for all mixing weights and all testing assay accuracies; i.e., Beta(1, 1).

As mentioned previously, we specify a slightly informative prior on a to avoid a strongly informative prior

distribution on the prior correlation between any two random effects [Chen and Dunson, 2003]. We chose

r = 0.00025 for both SSVS and NMIG, and aφ = aψ = 5 and bφ = bψ = 50 when using NMIG,

closely resembling the values chosen in Scheipl [2011]. To provide a fair comparison, the prior mean for

the variance component under NMIG was used as the variance component in SSVS and the Dirac spike; i.e.,

φ2q = ψ2
l = 50/4. To perform posterior estimation and inference, our MCMC algorithm was used to draw

100000 iterates, with every 50th being retained after a burn-in of 50000; i.e., we draw a posterior sample

consisting of 1000 iterates. Point estimates of the model parameters were obtained as the empirical means of

the posterior distributions. To assess the performance of the variable selection techniques, estimates of the
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posterior inclusion probabilities were also computed, where the posterior inclusion probability refers to the

probability that vq(wl) = 1. These estimates were taken to be the sample mean of the posterior draws of

vq and wl. To assess out of sample classification accuracy, we conducted a receiver operating characteristic

curve (ROC) analysis. In particular, for each model fit, we simulated 10000 new individuals (i.e., statuses

and covariates) and used our model fits to predict their infection probabilities. This gives 1000 ROC curve

estimates which are summarized as the average area under the curve (AUC). For purposes of comparison, we

also fit the competing model discussed in McMahan et al. [2017]. This comparison is aimed at demonstrating

the gains in classification accuracy that are possible via including cite specific random effects and using

variable selection to guide model selection.

Table 6.1 summarizes the results under the Dirac spike when Sej = 0.95 and Spj = 0.98 are

known. The summary includes the empirical bias (Bias), sample standard deviation of the point estimates

(SSD), and the average estimated probability of inclusion (PI). Tables 6.12 and 6.13 provide the analogous

results under SSVS and NMIG, respectively. These results illustrate that our approach reliably estimates the

fixed and random effects; i.e., the empirical bias and the variability of the estimators are small relative to the

true value of the corresponding parameter. These results also indicate that the proposed methodology is adept

at identifying non-zero fixed and random effects. That is, covariates with strong (no) effects almost always

have posterior inclusion probabilities being near 1 (0) in all data sets. Table 6.14 summarizes the results

of our ROC analysis. These results show that the average AUC for our model was markedly higher than the

competing procedure, across all configurations. This indicates that our approach provides better classification

than this existing technique. Further, when comparing Table 6.1 to Tables 6.12 and 6.13, one will note that

the Dirac spike tends to outperform both SSVS and NMIG in terms of variable selection.

Among all testing protocols, MPT tends to perform the worst; i.e., the estimates obtained from

analyzing MPT data exhibit more bias and variability. This is expected because MPT does not complete

classification like the other considered testing protocols; i.e., data collected via MPT consists of less infor-

mation about the individuals’ latent statuses when compared to DT, AT, and IT. In contrast, the estimation

performance under the two classification protocols (DT and AT) is as good if not better than the performance

under IT. Keep in mind, these estimates are obtained at nearly half the testing cost on average. Specifically,

to complete IT, 5000 tests are used, while DT and AT require on average 2747 and 3258 tests, respectively.

These results illustrate the “get more for less” phenomenon that has previously been reported with group

testing regression [Zhang et al., 2013, McMahan et al., 2017].

Table 6.2 summarizes the setting when the assay accuracy probabilities are unknown under the
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Dirac spike. Under this configuration, the proposed methodology is tasked with estimating four additional

parameters through analyzing DT and AT data. Tables 6.15 and 6.16 provide the analogous results under

SSVS and NMIG, respectively. These results indicate that the proposed approach can accurately estimate

the unknown assay accuracies; i.e., these estimates exhibit little (if any) average bias and the variability in

the estimates is small relative to the true value of the testing accuracies. Moreover, there are no appreciable

differences between the estimates displayed in Tables 6.1 and 6.2 for DT and AT; i.e., the estimation of the

fixed and random effects are not unduly impacted by the additional task of estimating the assay accuracies.

It is important to note that flat priors are specified for the testing accuracies in this application to provide

for the most challenging case; i.e., we have no prior information about the testing accuracies. In other

settings it might be desirable to set informative priors; e.g., if one believes that sensitivity or specificity are

around 0.95 an informative prior could be specified as Beta(19c, c), where large(small) values of c would

reflect strong(weak) prior belief. Informative priors could also be designed based on validation trials as we

demonstrate in Section 6. In either case, it is reasonable to assume that the proposed methodology would

perform as well if not better when informative priors are specified for the testing accuracies.

In addition to the studies described above, we have also performed a complementary study aimed

at assessing the robustness of our approach to severe violations of the conditional independence assumption;

i.e., the assumption that the testing responses in Z are conditionally independent given Z̃. Appendix A.2

provides the specific details on how this study was conducted along with a summary discussion of the results.

Briefly, this study reveals that the performance of our proposed regression method is not degraded even under

severe violations of this assumption.

[Table 1 about here.]

[Table 2 about here.]

2.6 Chlamydia testing application

As Iowa’s public health and environmental laboratory, the SHL serves all of the state’s counties

through infectious disease detection and surveillance. This includes annually screening thousands of res-

idents for the two most common sexually transmitted diseases (STDs): chlamydia and gonorrhea. This

process begins with specimens (e.g., urine, swab, etc.) being collected from residents at different clinics

(e.g., STD screening clinics, family planning, etc.) throughout the state. These specimens are then trans-
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ported to the SHL for testing. Current SHL screening protocols mandate that all male specimens and female

urine specimens be tested individually while a variant of Dorfman testing is used to classify female swab

specimens; for further discussion, see Tebbs et al. [2013]. The SHL uses the Aptima Combo 2 Assay to test

both pooled and individual specimens.

Our analysis focuses on the chlamydia data collected on female patients during the 2014 calendar

year. During this time period, 64 different clinics submitted specimens to the SHL for testing. The available

data consist of results collected on 4316 individual urine specimens, 416 individual swab specimens, and 2286

swab master pools (1 of size 2, 12 of size 3, and 2273 of size 4), as well as the test results required to resolve

the positive master pools. In addition to the test data, several covariates were collected on each individual: age

(in years, denoted by x∗1), a race indicator (x∗2 = 1 if Caucasian and x∗2 = 0 otherwise), an indicator denoting

whether the patient reported a new sexual partner in the last 90 days (x∗3 = 1 if affirmative and x∗3 = 0

otherwise), an indicator denoting whether the patient reported having multiple sexual partners in the last 90

days (x∗4 = 1 if affirmative and x∗4 = 0 otherwise), an indicator denoting whether the patient reported sexual

contact with an STD-positive partner in the previous year (x∗5 = 1 if affirmative and x∗5 = 0 otherwise),

and an indicator denoting whether the patient presented with symptoms (x∗6 = 1 if affirmative and x∗6 = 0

otherwise). To relate the individuals’ disease statuses to the available covariate information, we assume that

g−1{P (Ỹi = 1 | β,λ,a,bk(i))} = x′iβ + t′iΛAbk(i), where g−1(·) denotes the probit link. The covariate

vectors xi and ti are taken to be equal and are standardized versions of x∗i = (1, x∗i1, x
∗
i2, x

∗
i3, x

∗
i4, x

∗
i5, x

∗
i6)′.

This was done so that the spike and slab distributions will have the same impact on the regression coefficients

across all covariates. In this analysis, a random effect vector bk is specified for each of the 64 clinics, with

the convention that bk(i) = bk if the ith individual presented at the kth clinic site.

Given the results of the numerical studies presented in Section 5, in this analysis we chose to imple-

ment the proposed approach under the Dirac spike only. All other prior specifications were made in the exact

same fashion as was described in Section 5. The only difference being that three sets of testing accuracies

were conceptualized to account for the SHL’s screening protocol: Se(1) and Sp(1) for swab specimens tested

individually, Se(2) and Sp(2) for urine specimens tested individually, and Se(3) and Sp(3) for swab specimens

tested in pools. Flat priors were again specified for these parameters; i.e., Se(m), Sp(m) ∼ Beta(1, 1), for

m = 1, 2, 3.

Table 6.3 provides the estimated posterior mean and standard deviation for all model parameters,

along with estimated posterior probabilities of inclusion. To aid interpretability, we have unstandardized

these estimates. Further, Table 6.18 provides the six models with the highest posterior probabilities; see
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Kuo and Mallick [1998]. The direction (sign) of the point estimates of the fixed effects are congruous with

the findings from other similar epidemiological studies involving chlamydia infection. That is, the risk of

contracting chlamydia tends to decrease with age, and Caucasians appear to be associated with a lower risk

when compared to other races. In contrast, having a new sexual partner, multiple partners, and contact with

an STD are all associated with an increased risk. Lastly, our modeling framework identified the random

intercept parameter to be strongly significant; i.e., there exists strong evidence of heterogeneity across the

various clinics throughout the state. It is worthwhile to point out that these random intercepts act as crude

proxies for clinic level unmeasured confounders such as an areas socioeconomic status, rural verses urban

areas, etc. By examining these estimated random effects alongside other predictor variables (e.g., census

data) one could reveal new covariates that are related to chlamydia prevalence.

Shifting attention to the estimates of the testing assay accuracies, one may notice the lower estimates

of Se(2) and Se(3), suggesting potential underestimation of these parameters. To examine this further, we

performed the analysis again using informative priors which were set based on the product literature and

validation trials available on the Aptima Combo 2 Assay; see McMahan et al. [2017]. A summary of the

results is provided in Table 6.17. From these results, one will note that there are no appreciable differences

in the regression parameter estimates. Therefore, even if the testing accuracies are slightly underestimated,

this does not appear to unduly affect the estimation of the regression parameters, which are likely of primary

interest. When comparing Table 6.3 to Table 6.17, we find evidence that all testing accuracies are identifiable

under the Iowa testing protocol, with Se(2) and Se(3) being weaker “learners” than Se(1). This feature is likely

attributable to the specified testing protocol; e.g., testing all female urine specimens individually provides

very little confirmatory and/or counter-factual information that can be used to estimate Se(2).

Lastly, based on our posterior sampling strategy we are able to estimate a subject specific posterior

infection probability for each individual given all of the observed data. This is accomplished by averaging

over the sampled latent statuses for the ith individual; i.e., we compute the subject specific posterior infection

probability as G−1
∑G
g=1 Ỹ

(g)
i , where Ỹ (g)

i is the gth posterior draw of Ỹi, for g = 1, ..., G. Figure 6.6

displays these posterior probabilities for the individuals in this study, stratified by diagnosed status. These

probabilities can be used as a measure of diagnostic certainty; e.g., probabilities near 1(0) indicate that the

individual is (not) infected. Further, we believe that these probabilities could also be used to guide back-end

confirmatory screening via informative group testing procedures; e.g., see McMahan et al. [2012] and Bilder

et al. [2019].
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[Table 3 about here.]

2.7 Discussion

This work has developed a Bayesian generalized linear mixed model that can be used to analyze

data arising from any group testing protocol. To further disseminate our work, R programs which implement

the proposed approach have been developed and are available at

www.chrisbilder.com/grouptesting and a description of the main functions can be found in Ap-

pendix A.3.

Given the performance of the proposed approach, several modeling extensions could be of inter-

est. For example, many large-scale screening laboratories are now adopting multiplex assays, which test

specimens for multiple diseases simultaneously. That is, a multiplex assay generates a multivariate outcome

consisting of correlated binary data. Extending the proposed modeling framework to account for this type of

data would be of interest. Further, the proposed methodology could also be generalized to an additive model

framework with variable selection being applied to nonlinear functionals of the continuous predictors.
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Chapter 3

Mixed effects Bayesian regression for

multivariate group testing data

3.1 Introduction

Group testing has received a considerable amount of attention in recent years; rightfully so as it

has the potential to save practitioners a considerable amount of money in testing costs. In its essence, a

group testing protocol reduces the total number of tests required to screen a population for an infectious

disease. This phenomenon was first well established by Robert Dorfman in 1943 when he proposed his

Dorfman group testing algorithm to test United States soldiers for syphilis during World War II. Individuals

were placed into groups where their specimens (e.g., blood, urine, swabs, etc) were physically combined into

a pool. That pool is then tested for an infectious agent at the expense of a single diagnostic assay. Group

testing protocols proceed in the following manner: If the pooled specimen tests negatively, then all individuals

are declared disease free, and contrastly, if a pool tests positively, contributing members are then retested

algorithmicially to determine which individuals are positive. Today, the State Hygienic Laboratory (SHL)

in Iowa currently employs a group testing protocol and has reported a $3.1 million savings over a course

of 5 years after adopting the Dorfman group testing algorithm as their primary testing protocol. Pooling

biospecimens through group testing arises in many applications, including testing for HIV, HBV, and HCV

[Kleinman et al., 2005, Sarov et al., 2007, Krajden et al., 2014], testing animal and insect populations [Dhand

et al., 2010, Speybroeck et al., 2012], environmental testing [Heffernan et al., 2014], and drug discovery
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[Hughes-Oliver, 2006].

The group testing literature has grown vastly in recent years due to the dramatic cost effectiveness

that group testing offers over individual level testing. To name a few, some of the more recent notable works

include Vansteelandt et al. [2000], Bilder and Tebbs [2009], Delaigle and Meister [2011], and McMahan et al.

[2017]. However, these methods analyze data from a group testing algorithm through a univariate analysis;

i.e., to model data from a group testing protocol that used multiplex testing assays, they would have to

perform multiple univariate analyses. However, this practice may miss important features in the data, such as

correlation between diseases. That is, an individual who has disease one may be more likely to have disease

two. However, to date, there is a lack of existing methodology in the group testing literature to perform a

multivariate analysis of group testing data where a multiplex testing assay was used.

To further the model complexity, most public health laboratories like the SHL receive individual

specimens from different clinics. Given the different types of clinics (e.g., family planning clinics, STD

testing clinics, etc.) and different locations of clinics (e.g., urban area versus rural), it is reasonable to believe

that heterogeneity may exist from clinic to clinic. However, like the SHL, most laboratories pool individual

specimens as they arrive. That is, contributing members may share different clinic effects. This provides for

a challenging modeling framework.

In this paper, we develop a general multivariate Bayesian generalized linear mixed effects model

to analyze data arising from any group testing protocol. That is, individuals may be pooled together and

restested in any fashion, and may be tested for more than one disease simultaneously. The novelty of this

methodology is the multivariate analysis of such data, and furthermore, we achieve full model selection via

spike and slab priors.

The remainder of this paper is organized as follows. Section 2 introduces the notation seen through-

out this manuscript and lays out the developed methodology. Section 3 assesses the models capability of

estimating the unknown parameters for a given group testing data set. Section 4 analyzes the motivating

group testing data set, provided by the State Hygienic Laboratory (SHL) in Iowa. Finally, Section 5 con-

cludes the manuscript with a brief discussion.
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3.2 Methodology

3.2.1 Notation and preliminaries

Suppose that there are N individuals who are tested for the presence of any of D diseases through

a group testing procedure that used a multiplex testing assay. These individuals each visit one of K distinct

clinics, where an individual’s specimen (e.g., blood, urine, swabs, etc) is extracted for evaluation. These

specimens are either tested in house at the clinic site or sent to a central hub for testing; e.g., the State

Hygienic Laboratory in Iowa. In either case, the testing is done by forming J total groups (pools), where

the jth pool involves cj individuals; i.e., N =
∑J
j=1 cj . For the methodology to incorporate data from

any group testing algorithm, define Pj to be the set of individuals involved in the jth pool. Regardless of

the group testing algorithm, keeping track of pool membership will suffice for model fitting. Let the true

status of individual i = 1, 2, ..., N be Ỹi = (Ỹi1, ..., ỸiD)′, a D dimensional binary vector, and the true

status of pool j = 1, 2, ..., J be Z̃j = (Z̃j1, ..., Z̃jD)′, also a D dimensional binary vector. Here, Ỹid = 1

(Ỹid = 0) if individual i is truly positive (negative) for the dth disease. Group testing protocols mandate that

a pool is positive if at least one member is truly positive; i.e., Z̃jd = max{Ỹid : i ∈ Pj}. Unfortunately,

these binary vectors are never truly known due to testing assays of any kind being subject to error; i.e., false

positives or false negatives. To this end, denote the observed diagnoses as Yi = (Yi1, ..., YiD)′ and Zj =

(Zj1, ..., ZjD)′. Moreover, to acknowledge these imperfect testing assays, each pool receives a sensitivity

Sej = (Sej :1, ..., Sej :D)′ and specificity Spj = (Spj :1, ..., Spj :D)′, where Sej :d = P (Zjd = 1 | Z̃jd = 1)

and Spj :d = P (Zjd = 0 | Z̃jd = 0). The testing assay accuracies may be known constants and provided to

the model, or the model can simultaneously estimate them during model fitting; more details in Section 3.2.4.

To address the possible heterogenity that may exist across the clinic sites, a mixed effects model is

used to relate an individual’s covariate information to their infectious probability. For each of the K clinics,

the kth site gets assigned a random effect vector γkd, which is assumed to be a multivariate normal random

vector with mean zero and covariance matrix Σd, i.e., γkd ∼ N(0,Σd). Define for individual i and disease

d, xid as the pd dimensional covariate vector associated with the fixed effects and tid as the qd dimensional

covariate vector associated with the random effects. Let βd and γkd be the unknown fixed and random effects

vectors for the dth disease, respectively. It is assumed that the random effects are pairwise independent

across all sites and all diseases, i.e., γkd is independent of γk′d′ for all k, d 6= k′, d′. For individual i,

we set γ(i)d = γkd if and only if individual i was a patient at the kth clinic site. For ease of notation,

aggregate β = (β′1, ...,β
′
D)′, a p =

∑D
d=1 pd dimensional vector, γ(i) = (γ′(i)1, ...,γ

′
(i)D)′, a q =

∑D
d=1 qd
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dimensional vector, Xi = diag(x′i1, ...,x
′
iD), a D × p covariate matrix associated with the fixed effects, and

Ti = diag(t′i1, ..., t
′
iD), a D × q dimensional covariate matrix associated with the random effects. Then, the

multivariate infectious probability of the ith individual is related to their covariate information through the

following multivariate generalized linear mixed model

P (Ỹi = ỹi | β,γ(i),θ) = g(ηi;θ) (3.1)

where g is a known multivariate link function, θ is a collection of link dependent parameters (e.g., a correla-

tion matrix in the multivariate probit link) and ηi = (ηi1, ..., ηiD)′, where ηid = x′idβd + t′idγ(i)d.

Mixed effects models are important for clustered observations (clinics), but the dimension of free

parameters quickly becomes an issue and furthermore, the prior specification of each covariance matrix Σd

may not be clear. To overcome these challenges, Chen and Dunson [2003] propose reparameterizatizing

the covariance matrices as Σd = ΛdA
′
dAdΛd via a modified Cholesky decomposition. Here, Λd is a

nonnegative qd dimensional diagonal matrix with entries λd and Ad is a qd × qd lower triangular matrix

with entries ad = (amld : l = 1, ..., qd − 1;m = l + 1, ..., qd)
′ and unit main diagonal. Aggregating

λ = (λ′1, ...,λ
′
D)′ and a = (a′1, ...,a

′
D)′, the reparameterized model is

P (Ỹi = ỹi | β,λ,a,b(i),θ) = g(ηi;θ) (3.2)

where now ηid = x′idβd + t′idΛdAdb(i)d, and b(i)d is the standardized clinic specific random effect asso-

ciated with the dth disease. Specifically, bkd ∼ N(0, I) and b(i)d = bkd if and only if the ith individual’s

specimen was extracted at the kth clinic. Here, the standardized random effects adopt the same assumptions

as the original random effects. The benefit of model (3.2) over the unparameterized model is twofold. First, it

is no longer necessary to specify, or posit prior structure on, the covariance matrices Σd, d = 1, ..., D; instead

they are estimated through Λd and Ad. Second, by setting a diagonal element of Λd to zero effectively zeros

out the corresponding row and column of Σd, rendering that random effect insignificant. To this end, a spike

and slab prior distribution is utilized to exploit this feature, facilitating variable selection in both the fixed

effects and random effects.

The following conditional distribution of the observed testing outcomes Z = (Z′1, ...,Z
′
J)′ shows
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the relationship of the group testing data to the individual level model expressed in (3.2), which is given by

π(Z | β,λ,a,b,θ) =
∑

D∏
d=1

J∏
j=1

{
S
Zjd

ej :d
(1− Sej :d)1−Zjd

}Z̃jd
{
S
1−Zjd

pj :d
(1− Spj :d)Zjd

}1−Z̃jd

×
N∏
i=1

P (Ỹi = ỹi | β,λ,a,b(i),θ)

}
, (3.3)

where b = (b1, ...,bK)′. Note that in expressing this conditional distribution, a few mild assumptions have

been made. First, it is assumed that the testing outcomes for each disease are conditionally independent given

the true pool statuses Z̃ (i.e., Zjd | Z̃ is independent of Zj′d′ | Z̃) and that the conditional distribution Z | Z̃

does not depend on the individuals’ covariates. Second, the individuals’ true statuses Ỹi are conditionally

independent given the covariates and the random effects. To proceed, note that the summation in (3.3) is over

all possible D dimensional binary true statuses for all N individuals, rendering direct evaluation infeasible.

To overcome this, we utilize a data augmentation strategy used in error prone group testing literature; see

McMahan et al. [2017]. By introducing the true latent statuses Ỹi as random variables, we instead consider

the joint conditional distribution

π(Z, Ỹ | β,λ,a,b,θ) =

D∏
d=1

J∏
j=1

{
S
Zjd

ej :d
(1− Sej :d)1−Zjd

}Z̃jd
{
S
1−Zjd

pj :d
(1− Spj :d)Zjd

}1−Z̃jd

×
N∏
i=1

P (Ỹi = ỹi | β,λ,a,b(i),θ). (3.4)

where Ỹ = (Ỹ′1, ..., Ỹ
′
N )′. It should be noted that this data augmentation strategy will require sampling the

latent random variables Ỹ; however, this poses no issue as the full conditional distribution is obtainable; see
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Section 3.2.2. The prior specifications of the proposed model is

βrd | vrd ∼ (1− vrd) · δ0(βrd) + vrd ·N(0, φ2rd), r = 1, ..., pd

λld | wld ∼ (1− wld) · δ0(λld) + wld · TN{0, ψ2
ld, (0,∞)}, l = 1, ..., qd

ad ∼ N(md,Cd)

bkd ∼ N(0, I), k = 1, ...,K

vrd | τvrd ∼ Bernoulli(τvrd), r = 1, ..., pd

wld | τwld
∼ Bernoulli(τwld

), l = 1, ..., qd

τvrd ∼ Beta(av, bv), r = 1, ..., pd

τwld
∼ Beta(aw, bw), l = 1, ..., qd,

where md, Cd, av , aw, bv , and bw are all hyperparameters, along with the variance components φ2rd and ψ2
ld,

which are specified to be large to impose a diffuse slab distribution. The prior distributions stated above for the

fixed effects and random effects is the Dirac spike prior distribution, where δ0(x) is a degenerate distribution

for x with mass at zero and TN(a, b, c) is a truncated normal distribution that arises by restricting a normal

distribution with mean a and variance b to the interval c; for further details about the Dirac spike prior, see

Wagner and Duller [2012]. It is worth noting that md and Cd should be specified in an informative fashion

(e.g., md = 0 and Cd = 0.5I). This is noted in Chen and Dunson [2003], where failing to do so results in a

strong a priori correlation between any two random effects within the dth disease.

3.2.2 Posterior computation via probit link

To ground our methodology, we illustrate posterior computation through the multivariate probit link

function. Recall that the multivariate probit link function relates an individual’s covariate information to their

probability of infection through the following relationship:

P (Ỹi = ỹi | β,λ,a,b(i),R) = g(ηi;θ) =

∫
Ii1

∫
Ii2

· · ·
∫
IiD

φD(t; 0,R)dt (3.5)

where φD(· | 0,R) is a D dimensional multivariate normal density with mean 0 and correlation matrix R.

For each integral, the region of integration is given by Iid = (−∞, ηid) if Ỹid = 1 and Iid = [ηid,∞)

otherwise. To avoid identifiability issues, R must be a correlation matrix; see Chib and Greenberg [1998].

Equation 3.4, in conjunction with equation 3.5, shows that the full conditional distribution of the individuals’

latent statuses is Bernoulli for each disease. That is, Ỹid | Ỹ−id,Z,β,λ,a,b(i),R ∼ Bernoulli{p?id1/(p?id0+
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p?id1)}, where Ỹ−id is the vector Ỹi with the dth element removed and

p?id1 = gid1(ηi; R)
∏
j∈Ii

S
Zjd

ej :d
(1− Sej :d)1−Zjd

p?id0 = gid0(ηi; R)
∏
j∈Ii

{
S
Zjd

ej :d
(1− Sej :d)1−Zjd

}I(sijd>0){
(1− Spj :d)ZjdS

1−Zjd

pj :d

}I(sijd=0)

.

In the above expressions, the index set Ii = {j : i ∈ Pj} keeps track of which pools the ith individual was a

member of, sijd =
∑
i′∈Pj : i′ 6=i Ỹi′d, and gid1(gid0) is the integral in equation 3.5 when Ỹid = 1(0).

Unfortunately, the formulation of (3.5) inside of (3.4) is not very tractable in regards to the regression

parameters and the random effects. However, the seminal work of Albert and Chib [1993] can be readily

extended to higher dimensions. For each individual, introduce the latent random vector ωi = (ωi1, ..., ωiD)′,

which denotes a D dimensional normal random vector with mean ηi and correlation matrix R; i.e., ωi ∼

N(ηi,R). These latent vectors necessarily follow that Yid = 1 if ωid ≥ 0 and Yid = 0 if ωid < 0. Then, the

augmented likelihood function of (3.4) to be considered is

π(Z, Ỹ,ω | β,λ,a,b,R) ∝
D∏
d=1

J∏
j=1

{
S
Zjd

ej :d
(1− Sej :d)1−Zjd

}Z̃jd
{
S
1−Zjd

pj :d
(1− Spj :d)Zjd

}1−Z̃jd

×
N∏
i=1

|R|−1/2 exp

{
−1

2
(ωi − ηi)′R−1(ωi − ηi)

} N∏
i=1

f(ωi), (3.6)

where ω = (ω1, ...,ωN ) and f(ωi) =
∏D
d=1 I(ωid ≥ 0, Ỹid = 1) + I(ωid < 0, Ỹid = 0). This framework,

in conjunction with the posited prior specifications, allows posterior inference of the regression parameters to

be carried out with a full Gibbs sampling algorithm. To elucidate, under the Dirac spike, βrd is set to zero if

vrd = 0, and the nonzero elements of β, say βv , has the full conditional distribution βv | Ỹ,ω,λ,a,b,v ∼

N(µβ,Σβ), where v = (v1, ...,vD)′ and vd = (v1d, ..., vpdd)
′. The specific form of µβ and Σβ, along with

all other full conditionals needed to carry out the Gibbs sampler, are outlined in Appendix B.

3.2.3 Sampling correlation matrix

Up to this point, R has been treated as a known matrix of correlations between diseases. One may

view this as an impractical assumption and to that end, a posterior sampling algorithm that can be used to

simultaneously estimate these correlations is provided. Note that the sampling of this matrix, say with a

Wishart distribution, is not trivial due to the correlation constraint, i.e., bounded off-diagonal and unit main-

27



diagonal elements. Following the work of Zhang et al. [2006], a parameter-extended Metropolis-Hastings

(PX-MH) algorithm for the sampling of correlation matrices can be utilized. Here, parameter-extended refers

to the introduction of an extra variance parameter matrix D, a D dimensional diagonal matrix with dth

element denoted as Ddd. Then R can be sampled by generating a pair of R and D together in the following

manner. Assume that W follows a Wishart distribution with m0 degrees of freedom and scale matrix S;

i.e., W ∼ Wishart(m0,S). To relate the extra variance parameter matrix D and W to the desired matrix of

correlations R, we force W = D
1
2 RD

1
2 . Then PX-MH is carried out in the following manner:

PX-MH Algorithm
1. Initialize (R(0),D(0)) so that W(0) =

√
D(0)R(0)

√
D(0) is a covariance matrix. Set t = 1.

2. Sample W? =
√

D?R?
√

D? from Wishart(m,W(t)/m), where m is a tuning parameter.

3. Propose (R?,D?) as R? = D?−
1
2 W?D?−

1
2 and D?

dd = W?
dd.

4. Generate (R(t+1),D(t+1)) according to

(R(t+1),D(t+1)) =


(R?,D?) with probability α

(R(t),D(t)) otherwise.

5. Increment t and return to step 2.

The acceptance probability in step 4 is given by

α = min

{
1,

p(R?,D? | Ỹ,ω,β,λ,a,b)

p(R(t),D(t) | Ỹ,ω,β,λ,a,b)

f(W(t) | m−1W?)

f(W? | m−1W(t))

}
,

where p(R,D | Ỹ,ω,β,λ,a,b) is the joint posterior density of (R,D), which is up to a constant propor-

tional to

|R|
m−D−1

2 |D|m2 −1 exp
{
−tr(S−1D

1
2 RD

1
2 )/2

}
×

N∏
i=1

φD(ωi;ηi,R).

Furthermore, f(· | m−1W(t)) in α is the product of the Jacobian
∏D
d=1 D

D−1
2

dd and a Wishart distribution

with m degrees of freedom and scale matrix m−1W(t). Note that the degrees of freedom m is a tuning

parameter that can adjust the acceptance rates in the fourth step.
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3.2.4 Sampling assay accuracies

The methodology thus far has assumed the assay accuracies Sej :d and Spj :d are known constants.

In some settings, if not most, this assumption is not appropriate and so simultaneous estimation of the assay

accuracies is required. To do so, we follow the work of McMahan et al. [2017] and extend it toD dimensions.

Aggregate the indices of pools j = 1, ..., J that were tested with the mth multiplex testing assay and denote

as Im. Accordingly, notate Se(m):d and Sp(m):d as the sensitivity and specificity of the mth assay for the dth

disease, m = 1, ...,M ; i.e., Sej :d = Se(m):d and Spj :d = Sp(m):d for all j ∈ Im. With this convention,

equation (3.4) can be rewritten as

D∏
d=1

M∏
m=1

∏
j∈Im

{
S
Zjd

e(m):d(1− Se(m):d)
1−Zjd

}Z̃jd
{
S
1−Zjd

p(m):d(1− Sp(m):d)
Zjd

}1−Z̃jd

×
N∏
i=1

P (Ỹi = ỹi | β,λ,a,b(i),θ).

Given the form of this conditional distribution, natural prior choices for the testing assay accuracies are

Se(m):d ∼ Beta(ae(m):d, be(m):d) and Sp(m):d ∼ Beta(ap(m):d, bp(m):d). These specifications lead to the

following full conditionals

Se(m):d | Z, Ỹ ∼ Beta(a?e(m):d, b
?
e(m):d)

Sp(m):d | Z, Ỹ ∼ Beta(a?p(m):d, b
?
p(m):d),

where a?e(m):d = ae(m):d +
∑
j∈Im

ZjdZ̃jd, b?e(m):d = be(m):d +
∑
j∈Im

(1 − Zjd)Z̃jd, a?p(m):d = ap(m):d +∑
j∈Im

(1−Zjd)(1− Z̃jd), and b?p(m):d = bp(m):d +
∑
j∈Im

Zjd(1− Z̃jd). The posterior distributions derived in

Section 3.2.2 are left unchanged up to acknowledging dependence on the testing accuracies and accounting

for the slight change in notation.

3.3 Simulations

To assess the performance of our estimation and variable selection methods, we simulated group

testing data in the following manner. To closely mimic the features of the motivating Iowa data, K = 50

clinic sites were conceptualized with 100 individuals at each clinic; i.e., N = 5000. This sample size pro-

vides for a stress test of our model’s capability of recovering the true covariates, as compared to the amount
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of data available in the motivating data set. The infection status for each individual was generated as a

D = 2 dimensional binary vector Ỹi = (Ỹi1, Ỹi2)′ according to Ỹid = 1 if ωid ≥ 0 and 0 otherwise, where

ωi = (ω1d, ω2d)
′ is a random draw from a multivariate normal distribution with mean ηi and correlation ma-

trix R. The mean vectors ηi are constructed with the following values: β1 = (−4,−1.5, 0.5, 0.25, 0)′, β2 =

(−2.5, 1,−0.75, 0.3, 0, 0)′, λ1 = (1, 0.75, 0.25, 0, 0)′, λ2 = (0.8, 0.3, 0.15, 0, 0, 0)′, a1 = (0.9, 0.5, 0.7,07)′,

a2 = (0.75,−0.5, 0.8, 1.2, 0.5, 0.3,09)′, 0` is an `th dimensional zero vector, b(i)d = bkd if individual i pre-

sented at clinic site k, bkd
iid∼ N(0, I), and R’s off-diagonal elements are set to ρ = 0.99. We set the covariate

vectors associated with the fixed effects to standardized versions of x?i1 = (1, N(0, 1),B(0.5),B(0.5), N(0, 1))′

and x?i2 = (1, N(0, 1),B(0.5),B(0.5), N(0, 1),B(0.5))′, where B(0.5) represents a Bernoulli(0.5) random

variable. The random effects covariates for each disease are taken to be equal to the fixed effects covariates.

These covariate and parameter configurations provide for an overall disease prevalence rate of about 3% and

9%, which is in keeping with the observed prevalence rate of gonorrhea and chlamydia, respectively, from

the motivating data. This process was used to generate 500 individual level data sets.

Group testing outcomes were generated with these individual level data sets in the following manner.

Each individual was randomly placed into a group of size cj = 4 individuals. This poses the most difficult

estimation configuration; that is, individuals are pooled across sites rather than within sites and thus each

pool contains multiple random effects. To proceed, one of three group testing algorithms was implemented to

test each of these master pools; namely, master pool testing (MPT), Dorfman testing (DT), and array testing

(AT). Briefly, under MPT, each master pool is tested with no further retesting, regardless of the outcome. DT

proceeds by individually retesting each contributing member of a master pool that tested positively. Similarly,

AT views the master pools as rows and columns of an array and will retest individuals identified to be likely

positives; e.g., individuals residing at the intersection of positive rows and columns. For the specific AT

protocol we adopted, see Kim et al. [2007]. Under each protocol, the testing response for the jth pool was

simulated as Zjd | Z̃jd ∼ Bernoulli{Sej :dZ̃jd+(1−Spj :d)(1−Z̃jd)}, where Z̃jd = max{Ỹid : i ∈ Pj}. For

comparative purposes, individual testing (IT) was also implemented. Regarding the testing assay accuracies,

two different simulation configurations were considered. The first setting assumes that the sensitivity and

specificity for each pool are known; i.e., Sej :1 = Sej :2 = 0.95 and Spj :1 = Spj :2 = 0.98 for all j = 1, ..., J .

In the second setting, two different multiplex testing assays are considered unknown and estimated; the first

assay (m = 1) is used to test pools and the second assay (m = 2) is used to retest individuals. More

specifically, we set Se(1):d = 0.95, Se(2):d = 0.98, Sp(1):d = 0.98, and Sp(2):d = 0.99 for d = 1, 2. In this

setting, we only consider DT and AT since both protocols mandate both pool and individual level testing.
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To perform the assessment of the proposed model, we set m0 = 0,C0 = 0.5I, and used flat priors

for all mixing weights. Recall that the prior parameters for a should be chosen in a somewhat informative

fashion to avoid a strong a priori correlation between any two random effects; see Chen and Dunson [2003].

To impose a diffuse prior variance on the slab distribution of the fixed and random effects, we took φ2rd =

ψ2
ld = 100. The prior degrees of freedom and scale matrix for W was set as m0 = D + 1 = 3 and S = I,

where I is a D ×D identity matrix, and the proposal degrees of freedom was set to m = 300; these values

are discussed in Zhang et al. [2006]. To perform posterior estimation and inference, the last half of 50000

iterations of our MCMC algorithm was used for summary statistics. Point estimates of the model parameters

were obtained as the empirical means of the posterior distributions.

Table 6.4 summarizes estimation performance in the first simulation setting; that is, when Sej:d and

Spj:d are known. Overall, these results illustrate our approach provides reliable inference for the fixed and

random effects; i.e., the empirical bias and the variability in the estimates are small relative to the true value

of the corresponding parameter. These results also indicate the proposed methodology is adept at identifying

non-zero fixed and random effects. That is, covariates with strong (no) effects almost always have posterior

inclusion probabilities near 1 (0) in all data sets.

Among the group testing protocols presented in Table 6.4, MPT generally performs the worst in

terms of estimation i.e., estimates obtained from analyzing MPT data exhibit the most bias and variability.

This is expected because MPT does not complete the classification process like the other protocols and there-

fore results in less information about the individuals’ latent statuses. In contrast, the estimation performance

under the two classification protocols (DT and AT) is as good if not better than the performance under IT;

furthermore, DT/AT estimates are obtained at about 60% of the testing cost on average when compared to IT.

Specifically, 5000 tests are used to complete IT, while DT and AT require 2747 and 3258 tests on average,

respectively. These results illustrate the “get more for less” phenomenon that has previously been reported

with group testing regression [Zhang et al., 2013, McMahan et al., 2017].

Table 6.5 summarizes estimation performance when the assay accuracy probabilities are unknown.

In this second setting, the proposed methodology is tasked with estimating 8 additional parameters; i.e.,

the testing assay accuracies. These results indicate we can accurately estimate these parameters and the

variability in the estimates is small relative to the true values. Moreover, there are no appreciable differences

between the estimates in Tables 6.4 and 6.5 for DT and AT; i.e., inference for the fixed and random effects is

not impacted by having to estimate these additional parameters.
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[Table 4 about here.]

[Table 5 about here.]

3.4 Data application

The State Hygienic Laboratory (SHL) in Iowa annually screens thousands of residents for two of

the most common sexually transmitted diseases (STDs): gonorrhea and chlamydia. In an effort to more

accurately detect the infectious agents, while also saving money in testing costs, the SHL employs group

testing and tests for these two diseases simultaneously with the use of multiplex testing assays. The process

begins with drawing specimens (e.g., urine, swab, etc.) from individuals at different clinics (e.g., family

planning clinics, STD testing clinics, etc.) throughout the state which are then transported to the SHL for

testing. Current SHL screening protocols mandate that all male specimens and female urine specimens be

tested individually while all female swab specimens are processed through a variant of Dorfman testing (DT);

for further discussion, see Tebbs et al. [2013]. The SHL uses the Aptima Combo 2 Assay to test both pooled

and individual specimens.

During the 2014 calendar year, 64 different clinics submitted specimens to the SHL for testing. The

available data consist of results collected on 4316 individual urine specimens, 416 individual swab specimens,

and 2286 swab master pools (1 of size 2, 12 of size 3, and 2273 of size 4), as well as the test results required

to resolve the positive master pools. That is, a master pool that tests positive for either disease is resolved

by retesting all individuals for both diseases simulatenously. In addition to the test data, several covariates

were collected on each individual: age (in years, denoted by x∗1), a race indicator (x∗2 = 1 if Caucasian and

x∗2 = 0 otherwise), an indicator denoting whether the patient reported a new sexual partner in the last 90

days (x∗3 = 1 if affirmative and x∗3 = 0 otherwise), an indicator denoting whether the patient reported having

multiple sexual partners in the last 90 days (x∗4 = 1 if affirmative and x∗4 = 0 otherwise), an indicator denoting

whether the patient reported sexual contact with an STD-positive partner in the previous year (x∗5 = 1 if

affirmative and x∗5 = 0 otherwise), and an indicator denoting whether the patient presented with symptoms

(x∗6 = 1 if affirmative and x∗6 = 0 otherwise). We relate the individuals’ disease statuses to the available

covariate information via the multivariate probit link function in Equation (3.5), where the covariate vectors

xi1,xi2, ti1, and ti2 are taken to be equal and are standardized versions of (1, x∗i1, x
∗
i2, x

∗
i3, x

∗
i4, x

∗
i5, x

∗
i6)′.

Standardization was used so that the spike and slab distributions have the same impact on the regression

coefficients across all covariates. For each of the 64 clinics, a random effect vector bkd is conceptualized for
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each disease, with the convention that b(i)d = bkd if the ith individual was a patient at the kth clinic site.

To complete model specification, all prior specifications were made in the exact same fashion as

was described in Section 3.3 with the exception of the testing assay accuracies. For this analysis, three sets

of multiplex testing accuracies were conceptualized to account for the SHL’s testing protocol: Se(1):d and

Sp(1):d for individually testing swab specimens, Se(2):d and Sp(2):d for individually tested urine specimens,

and Se(3):d and Sp(3):d for swab specimens tested in pools. In total, this gives 12 testing assay accuracies

to be estimated. Informative priors were used on the testing assay accuracies. Specifically, for gonorrhea,

we specified a?e(m):1

(
a?p(m):1

)
to be 126(1335), 116(1347), and 126(1335) for m = 1, 2, 3, respectively,

and took b?e(m):1

(
b?p(m):1

)
to be 1(17), 11(10), and 1(17) for m = 1, 2, 3, respectively. For chlamydia,

we set a?e(m):2

(
a?p(m):2

)
to be 195(1154), 197(1170), and 195(1154) for m = 1, 2, 3, respectively, and

b?e(m):2

(
b?p(m):2

)
to be 12(28), 11(13), and 12(28) for m = 1, 2, 3, respectively. These values are well vetted

in extensive pilot studies and have been used in previous literature; e.g., see McMahan et al. [2017].

Table 6.6 displays estimates of the posterior mean and standard deviation for all model parameters

and estimates of the posterior probabilities of inclusion for the fixed and random effects. The direction of

the estimates of the fixed effects are expected in light of known epidemiological patterns of gonorrhea and

chlamydia infections. That is, the risk of infection tends to decrease with age and Caucasian females are

associated with a lower risk when compared to females of other races. In contrast, having a new sexual

partner, multiple partners, and contact with STDs are all associated with an increased risk. Our analysis also

identifies the random intercept parameter for both diseases, and potentially the random effect for new sexual

partner associated with chlamydia, to be strongly significant indicating clear evidence of heterogeneity across

the clinics throughout the state.

[Table 6 about here.]

3.5 Discussion

We have proposed a Bayesian approach to estimate multivariate generalized linear mixed models

with data arising from a group testing protocol. The novelty of the proposed methodology is the multivari-

ate nature of the model, allowing practitioners to analyze group testing data arising from multiplex testing

assays. Moreover, when compared to existing regression techniques for group testing data, the appeal of our

methodology is twofold. First, including random effects allows one to account for heterogeneity that may

exist across subgroups of the population; i.e., clinic sites. Second, our approach employs automatic variable
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selection for both the fixed and random effects by using spike and slab priors. Through a series of data

augmentation steps, we illustrate how our regression methods can be used with the multivariate probit link

function.
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Chapter 4

A Bayesian Hierarchical Model for

Identifying Significant Polygenic Effects

while Controlling for Confounding and

Repeated Measures

4.1 Introduction

Oryza sativa, or Asian rice, is a staple food in Asian countries, and its continual production is

essential to food security. As the fourth most populous country in the world, Indonesia is also one of the

biggest producers and consumers of rice. With a current annual population growth rate of 1.2% [Bank,

2012], the Indonesian population is predicted to reach 337 million in 2050 [Facts, 2012]. With the current

rate of rice consumption at 139 kg per capita per year [Shean, 2012], Indonesia must reach an annual rice

production of 47 million tons by 2050 to meet population needs. These needs have spurred research aimed

at increasing crop yield by better understanding which rice varieties respond favorably/unfavorably to certain

growing conditions. For example, the Indonesian Center for Rice Research (ICRR) is continuously evaluating

new rice varieties from breeding programs. The practice of cross breeding plants to create new varieties with

desirable characteristics dates back to the origins of agriculture. To aid this endeavor, this paper develops
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statistically sound methods that can identify genetic factors related to specific phenotypes of interest, while

controlling for confounding variables, genetic similarities, and allowing for repeated measurements. Our

methods provide agro-scientists with a new tool that can be used to predict the potential of new plant varieties,

without requiring expensive field testing.

Several key concerns arise when new variety accessions are evaluated. For example, it is hypothe-

sized that climate change will affect rice production through a rise in average temperatures and increasingly

frequent and prolonged floods and droughts in Southeast Asia [Singh et al., 2014]. For every degree Celsius

increase in temperature, rice yields are estimated to decline by 7% [Matthews et al., 1997]. Further, drought

is the largest constraint to rice production in the rainfed agricultural systems of Asia [Pandey and Bhandari,

2009]. To address such issues, researchers seek to identify/develop varieties of rice that are resilient to ad-

verse climate conditions and have desirable production qualities. The proposed methods, by controlling for

covariate effects, have two beneficial characteristics. First, they allow for a more accurate assessment of

genetic effects that could influence variety development. Second, they allow one to predict how a particular

phenotype of interest will perform in conditions where data are not taken.

New plant development based on genetic variation has, of course, been extensively considered else-

where. For example, marker-assisted selection (MAS) uses DNA markers to identify and develop plants with

desirable traits, including disease resistance and yield improvements. This process involves linking variations

in the genome, particularly single-nucleotide polymorphisms (SNPs), to important characteristics and then

using those genetic variants to select seeds for planting or breeding. MAS programs have had limited success

when multiple genetic and environmental factors are involved [Kilian et al., 2012, Schielzeth and Husby,

2014, Sun and Wu, 2015]. On the statistical side, rudimentary analyses often fail to appropriately control for

environmental variables. A single genetic variant typically has a small effect on rice yield; however, their

combined effects can be significant. On the other hand, field factors such as seasonal time of planting, dura-

tion in the field, intensity of stress, and overall climatic conditions strongly influence rice yield. Thus, by not

appropriately accounting for the latter, evaluation of the former is a difficult task.

From a statistical point of view, this study seeks to identify and assess the joint effect of genetic

markers while controlling for confounding covariates, a task tantamount to model selection in a high dimen-

sional regression framework. Many techniques exist for such problems; e.g., the least absolute shrinkage and

selection operator (LASSO) of Tibshirani [1996a], smoothly clipped absolute deviations regression of Fan

and Li [2001a], the elastic net of Zou and Hastie [2005a], and the adaptive LASSO Zou [2006a], etc. These

techniques treat the observed phenotypic responses as statistically independent, which is unrealistic since the
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rice varieties in question are genetically similar to each other. To account for this issue, Zhou et al. [2013]

proposed a Bayesian sparse linear mixed model, which uses a “spike and slab” prior to induce sparsity. This

innovative approach is not directly applicable here as it does not allow for repeated measurements taken on

the same rice variety, which is needed to evaluate environmental factors. Another notable contribution in

this area is that of Yazdani and Dunson [2015a], which proposed a two-stage approach that is a hybrid of

a Bayesian single and simultaneous analysis; i.e., the first stage screens markers independently to develop

a candidate set, the candidate set of markers is then jointly modeled in the second stage. In both of the

aforementioned methods, joint estimation and inference is completed through standard Markov Chain Monte

Carlo (MCMC) techniques, which can be computationally burdensome when the number of genetic markers

is large. Thus, a general sparse regression methodology is developed here for variable selection in a high

dimensional context in the presence of confounding and genetic variables. The proposed approach explicitly

accounts for genetic similarities and allows for repeated measures (e.g., across fields, seasons, etc.). From

the hierarchical representation of the proposed model, a computationally efficient expectation-maximization

(EM) algorithm is developed for parameter estimation, providing almost instantaneous estimates of all model

parameters for studies similar in size to the motivating application.

The remainder of this article is organized as follows. Section 2 introduces a sparse regression model

and describes an EM algorithm for parameter estimation. Section 3 studies the finite sample properties of

the proposed estimator through simulation. Section 4 applies the proposed methodology to yield data for 467

rice varieties planted in three fields in Indonesia. Section 5 concludes with comments about the limitations

and extensions of the model and study design.

4.2 Model

To assess environmental and genetic effects while accounting for genetic similarities, the regression

model

Yi = β0 + F′iβ1 + S′iβ2 + G′iγ + εi, i ∈ {1, . . . , n}, (4.1)

is posited. Here, Yi is a response variable representing a phenotype of interest measured on the ith observation

(e.g., crop yield), Fi = (Fi1, . . . , Fir)
′ is an r-dimensional vector of covariates (e.g., field identifiers, tem-

perature, humidity, etc.), Si = (Si1, . . . , Siq)
′ is a q-dimensional vector of single-nucleotype polymorphism

(SNP) genotypes, Gi is a k-dimensional binary vector indicating the plant variety of the ith observation, and
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εi is the error term. The regression coefficients β1 and β2 are covariate and genetic marker effects, respec-

tively, with β0 denoting the usual intercept and γ being a k-dimensional vector of variety specific random

effects. For modeling purposes, it is assumed that the error terms are independent and follow a normal distri-

bution with zero mean and common variance σ2; i.e., ε|σ2 ∼ N(0, σ2I), where ε = (ε1, . . . , εn)′ and I is an

n × n identity matrix. Through the specification of Gi, one can handle multiple observations (i.e., repeated

measurements) from the same plant variety by allowing them to share a common random effect.

In this model, genetic similarities between distinct varieties are quantified through random effects.

In particular, as in Zhou et al. [2013] and Zhou [2016], we assume that

γ|σ2 ∼ N(0, σ2C),

where C is a known k× k “relatedness matrix” that describes the genetic similarities between the k different

plant varieties. Several forms of C have been proposed; for further discussion see Dodds et al. [2015]

and the references therein. Most forms of C are based on measured genotypes, which are unique to the k

varieties under consideration. The metric implemented by the genome-wide efficient mixed model association

(GEMMA) algorithm is used here; for further details and discussion, see Zhou et al. [2013] and Zhou [2016].

In particular, C = q−1SuS
′
u, where Su is a k × q matrix whose `th row consists of the genotypes for the `th

plant variety, for ` = 1, . . . , k. Other relatedness matrices, such as those discussed in Dodds et al. [2015], are

easily incorporated into our approach.

For ease of exposition, make the aggregations Y = (Y1, . . . , Yn)′, S = (S1, . . . ,Sn)′, F =

(F1, . . . , ,Fn)′, G = (G1, . . . ,Gn)′, β = (β0,β
′
1,β
′
2)′ = (β0, β1, ..., βp)

′, p = r + q, and X = (1,F,S),

where 1 is an n-dimensional vector of ones. Then (4.1) is succinctly expressed as

Y = Xβ + Gγ + ε, (4.2)

where the ith row of the design matrix X is Xi = (1, Fi1, . . . , Fir, Si1, . . . , Siq). It is worthwhile to point

out that the proposed approach can also be used to evaluate SNP-SNP interactions and/or SNP-covariate

interactions, by including the necessary and usual terms in the design matrix X. Although, due to the combi-

natorial explosion in the potential number of such interactions, it is generally advisable that these interactions

be chosen judiciously. To complete the Bayesian model formulation, the following prior distributions for β0,
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βj , and σ2 are specified:

β0|σ2 ∼ N(0, σ2T0),

βj |σ2, α, η ∼ GDP(ψ = ση/α, α), for j = 1, . . . , p,

σ2 ∼ π(σ2) ∝ 1/σ2.

Here θ ∼ GDP(ψ, α) indicates that the random variable θ has a generalized double Pareto distribution whose

probability density function is

f(θ|ψ, α) =
1

2ψ

(
1 +
|θ|
αψ

)−(α+1)

, −∞ < θ <∞,

where ψ > 0 and α > 0 are scale and shape parameters, respectively. These prior specifications put a vague

independent normal prior on β0 when T0 is large, and independent generalized double Pareto shrinkage priors

on the other regression coefficients. For further details, see Armagan et al. [2013b]. As such, our approach is

referred to as the genetic generalized double Pareto (GGDP) regression model. Through the shrinkage prior,

our method can handle the scenario where p > n, which are ubiquitous in genomic association studies such

as the one considered herein.

The hyperparameters α and η play a crucial role in the shrinkage prior. Larger values of α corre-

spond to a more peaked prior density with lighter tails, thus imposing stronger shrinkage on the regression

parameters. In contrast, larger η provide a flatter density with less shrinkage. As suggested in Armagan

et al. [2013b], a suitable default choice for these hyperparameters is α = η = 1, which leads to priors with

Cauchy-like tails. To circumvent specification of these hyperparameters, we use the following hyper-priors:

α ∼ Uniform(τ1α, τ2α), τ2α > τ1α > 0,

η ∼ Uniform(τ1η, τ2η), τ2η > τ1η > 0.

This makes the data inform us about the values of α and η, and serves as an attempt to prevent over/under

shrinking the regression coefficients.

A key feature of the generalized double Pareto shrinkage prior is that it can be represented as a

scale mixture of normal distributions, see Proposition 1 in Armagan et al. [2013b]. Thus, for the regres-

sion coefficients, the following hierarchical representation provides for the same prior specifications as those
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above:

β|σ2,T ∼ N(0, σ2T),

Tj |λj ∼ Exponential(λ2j/2), for j = 1, ..., p,

λj |α, η ∼ Gamma(α, η), for j = 1, ..., p,

where T = diag(T0, ..., Tp) and T0 is again a specified constant. This hierarchical representation uses the rate

parameterization of both the exponential and gamma distributions; for example, the mean of an Exponential

variate with parameter λ is λ−1.

Under the above hierarchy, an efficient Markov Chain Monte Carlo (MCMC) sampling algorithm

can be constructed through a sequence of Gibbs and Metropolis Hastings steps. Unfortunately, inference via

standard MCMC techniques will not provide a sparse estimate of β, despite the specified shrinkage prior. Ob-

taining a sparse estimator allows one to estimate the unknown parameters in the model while simultaneously

identifying variables that are significantly related to the response. To this end, an EM algorithm is developed

to obtain a sparse Bayesian maximum a posteriori probability (MAP) estimator of β. Essentially, this blends

standard frequentist and Bayesian methods, as motivated by Armagan et al. [2013b]. The use of a shrinkage

prior and our non-standard estimator are the primary improvements over standard GEMMA implementations.

In particular, GEMMA specifies a “spike and slab” prior for the regression coefficients and completes model

fitting through MCMC techniques, which can be computationally burdensome and does not yield a sparse

estimator.

4.2.1 Sparse Estimation for Variable Selection

The key problem addressed here is to identify which covariates influence the response in (4.1). Mo-

tivated by the GDP prior framework and its hierarchical formulation, an EM algorithm will now be developed

to facilitate both model fitting and parameter selection via a MAP estimator. The EM algorithm developed

for the model in (4.1) is similar to that in Armagan et al. [2013b], with a few differences. Specifically, our

formulation allows one to account for genetic similarities between plant varieties through the random effects

γ, and the parameters that control the shrinkage/regularization (i.e., α and η) are estimated along with the

other model parameters.

The EM algorithm is developed by viewing the posterior distribution, resulting from the hierarchical

representation of the GDP prior, as a complete data likelihood in which Tj and λj are regarded as missing

40



(i.e., latent) data, after integrating over the distribution of γ. After integrating over the distribution of the

random effects, one obtains

Y|β, σ2 ∼ N(Xβ, σ2Q), (4.3)

where Q = I + GCG′. The parameters updated at the maximization (M) step of the algorithm are

θ = (β, σ2, α, η). The derivation of the EM algorithm begins by computing the expectation of the loga-

rithm of the complete data likelihood (i.e., the logarithm of the posterior distribution) with respect to the

missing data, conditional on the observed data D = {Y,X,G} and current parameter estimates θ(d) =

(β(d), σ2(d), α(d), η(d)) (where d indicates the iteration level in the algorithm). This yields Q(θ,θ(d)) =

Q1(θ,θ(d)) +Q2(θ,θ(d)) +Q3(θ(d)), where

Q1(θ,θ(d)) =−
(Y −Xβ)′Q−1(Y −Xβ) + β2

0T
−1
0 +

∑p
j=1 β

2
jE(T−1j )

2σ2

− n+ p+ 3

2
log(σ2),

Q2(θ,θ(d)) =

p∑
j=1

α log(η)− log{Γ(α)}+ (α− 1)E{log(λj)} − E(λj)η,

and Q3(θ(d)) is a function of θ(d), but is free of θ. Here and elsewhere, the conditioned variables in ex-

pectations is suppressed for notational brevity; i.e., E(·) = E(·|D,θ(d)). Using the model’s hierarchical

formulation, it is possible to express all needed expectations in closed form:

E(T−1j ) = (α(d) + 1)σ2(d)/{|β(d)
j |(|β

(d)
j |+ η(d)σ(d))},

E{log(λj)} = Ψ(α(d) + 1)− log(|β(d)
j |/σ

(d) + η(d)),

E(λj) = (α(d) + 1)/(|β(d)
j |/σ

(d) + η(d)),

where Ψ(x) = Γ′(x)/Γ(x); i.e., Ψ(·) is the digamma function.

The M step of the EM algorithm has θ(d+1) = argmaxθQ(θ,θ(d)). Maximization of Q(θ,θ(d))

over β and σ2 yields the closed form updates

β(d+1) = (X′Q−1X + D(d))−1X′Q−1Y,

σ2(d+1)
=

(Y −Xβ(d+1))′Q−1(Y −Xβ(d+1)) + β(d+1)′D(d)β(d+1)

n+ p+ 3
,

where D(d) = diag{T−10 , E(T−11 ), . . . , E(T−1p )}. The updates α(d+1) and η(d+1) are the maximizers of
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Q2(θ,θ(d)) and are computed via standard numerical optimization techniques. Note, the uniform priors for

α and η dictate that the updates of α(d+1) and η(d+1) be computed over the intervals (τ1α, τ2α) and (τ1η, τ2η),

respectively.

The EM algorithm can now be succinctly stated:

1. Initialize θ(0) and set d = 0.

2. Compute β(d+1) and σ2(d+1) via the aforementioned expressions.

3. Obtain α(d+1) and η(d+1) as the maximizers of

p∑
j=1

α log(η)− log{Γ(α)}+ (α− 1)E{log(λj)} − E(λj)η.

4. Set d = d+ 1, and return to Step 2.

Steps 2-4 are iterated until convergence, at which point a sparse estimator of the regression coeffi-

cients is obtained. Due to the penalty form in the GDP prior, once a regression coefficient is dropped from the

model (i.e., is set to zero), it can not return. Thus, the computational burden lessens as the algorithm iterates

through steps 2-4.

Note, when p >> n the computationally expensive aspect of the proposed EM algorithm involves

the inversion of a (p+1)× (p+1) dense matrix in order to compute the update of the regression coefficients.

This computational burden can easily be avoided by exploiting the Sherman-Morrison-Woodbury formula,

so that one has that

(X′Q−1X + D(d))−1 = D(d)−1

−D(d)−1

X′(Q + XD(d)−1

X′)−1XD(d)−1

,

where the inversion of D(d) is trivial since it is diagonal and the other matrix inversion step on the right-hand

side involves only an n×nmatrix. Utilizing this inversion formula, the proposed approach can be used when

p is on the order of 105, which is a situation which is commonly encountered in genome-wide association

studies.

We point out that if Q = I, a model that ignores genetic similarities is fitted; i.e., the model reduces

to Y = Xβ + ε. We refer to this model as the generalized double Pareto (GDP) regression model. Further,

by setting α = τ1α = τ2α, η = τ1η = τ2η , and Q = I, the proposed approach reduces to that in Armagan

et al. [2013b].
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4.3 Numerical Studies

A simulation study was conducted to evaluate the finite sample performance of our approach. The

characteristics assessed include the method’s ability to 1) identify significant covariates under various signal

to noise ratios, 2) accurately estimate the effect size of significant covariates, 3) classify covariates not related

to the response as such, and 4) capably handle the complex data structures that are ubiquitous in genomic

association studies. To accomplish this, data were simulated to mimic the design of our ensuing application:

k = 430 unique rice varieties, each of which are planted in three distinct fields. This results in n = 1290

observations. For this study, the 430 unique SNP vectors available in our application were used; thus, q =

1232. This setup allows us to include the complex SNP relationship that naturally exists between rice varieties

that would be difficult to otherwise simulate. Yields were generated from the model

Yi = X′iβ + G′iγ + εi,

where Xi = (1, Fi1, Fi2,S
′
i)
′, Fij , for j = 1, 2, is a field indicator, εi ∼ N(0, σ2), γ ∼ N(0, σ2C),

C = q−1SuS
′
u, Su is a k × q dimensional matrix whose rows contain the 430 unique SNP vectors, and

Gi is a k-dimensional binary variety identification vector for the ith observation. The study considers σ ∈

{0.5, 1.0, 2.0}.

To generate yields, we posit nine covariates as non-zero. In particular, the intercept and the two

field effects were taken as β0 = 3.00, β1 = 3.50, and β2 = 1.00. The six significant SNPs were selected at

random, without replacement, from the set of common SNPs with minor allele frequency greater than 0.1, and

the corresponding effects, after reordering the SNP values for notational convenience, were set to β3 = 0.25,

β4 = 0.50, β5 = 0.75, β6 = 1.00, β7 = 1.50, and β8 = 2.00. All other regression coefficients are zero. The

process of randomly selecting SNP values was repeated three times; for each replication, 500 independent

data sets were constructed for each σ. Overall, the generating process produced 4500 independent data

sets. Our algorithm used T0 = 1000 and the tuning parameters τ1α = τ1η = 0.001 and τ2α = τ2η = 5.

Other choices for the tuning parameters were investigated (results not shown) and produced no appreciable

differences from those reported below.

Our results are compared to a standard marginal analysis, which is a staple in genome association

studies. In particular, q models of the form

Yi = β0 + β1Fi1 + β2Fi2 + β3Sil + εi, (4.4)
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were fit to each data set and the estimate of β3 along with its p-value was calculated. To assess the importance

of including variety specific random effects (i.e., γ) in (4.1), the GDP regression model

Yi = X′iβ + εi,

was also fitted to each data set using the same parameter configurations as above. In order to provide a

comparison between the proposed approach and existing methods, we also analyzed each data set using the

methodology outlined in Armagan et al. [2013b], hereafter referred to as ADL. In this implementation we

utilized the suggested default choice for the hyperparameters; i.e., we set α = η = 1.

Table 6.7 summarizes simulation results obtained from the GGDP, GDP, and ADL regression mod-

els for the first set of randomly selected SNPs for all considered σ. This summary includes the empirical bias,

empirical mean-squared error, and sample standard deviation of the parameter estimates that were estimated

as non-zero, as well as the empirical percentage of runs where a regression coefficient was identified as being

non-zero From these results, all three methods seem to perform well across most of the simulation configura-

tions. In particular, for all considered σ, the three techniques identified the significant regression coefficients

nearly 100% of the time, with accuracy decreasing with larger σ and smaller effect sizes. Moreover, the esti-

mators obtained from these techniques exhibit little evidence of bias in most configurations. It is worthwhile

to point out that of the three approaches the GGDP model in general provided the smallest mean-squared

errors.

Table 6.7 also provides the empirical false discovery rate (the number of insignificant covariates

identified as being significant divided by the total number of insignificant variables) in all simulation con-

figurations. While neither the GGDP or GDP methods perform poorly, some distinctions are apparent. In

particular, the GGDP regression model, which makes use of the genetic similarity matrix, actually reduces

the number of false discoveries, on average, by more than a factor of four. To clarify, in this study, a false

discovery rate of 0.3% was obtained by the proposed approach, while a false discovery rate of 1.35% was ob-

tained for the GDP regression model. Hence, the GGDP regression model, when compared to its counterpart

that ignores genetic similarities, helps reduce false discoveries. In contrast, the false discovery rate for ADL

was 26%, which was far worse than the other two procedures. Table 6.7 also provides the average number of

iterations and computational time required to fit the three models. The time trials were run on a Dell Optiplex

790, with a 2.9GHz Intel Core i7-2600 CPU. From these results one can see that the proposed approach is

far more computationally efficient than the ADL method; i.e., the GGDP and GDP methods complete in far
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fewer iterations and in a shorter time frame when compared to the ADL method.

[Table 7 about here.]

A few concluding remarks follow. From additional studies (results not shown), it was ascertained

that the proposed EM algorithm, for both the GGDP and GDP models, is robust to initialization; i.e., in

these studies multiple initial values were specified resulting in the same point of convergence. Results from

the other two sets of randomly selected SNPs were almost identical to those in Table 6.7 and are therefore

omitted. Marginal analyses again yielded higher false discovery rates (not shown here). Section 5 provides a

more detailed discussion on the appropriateness and pitfalls of marginal analysis in these settings.

To complement the studies described here, an additional simulation study was conducted to exam-

ine the performance of the proposed methodology in higher-dimensional settings. In particular, this study

considered values of q ∈ {104, 105}. Briefly, the findings from this additional study reinforces all of the

findings discussed above. That is, these studies tend to indicate that the proposed methodology can be used

to efficiently analyze genetics data sets consisting of a large number of SNPs. Moreover, this analysis can be

completed in a relatively short period of time; e.g., when q = 104 and q = 105 the average model fitting time

in this study was approximately 3.5 and 40 minutes respectively.

4.4 Application

The developed methods were used in a genetic association study of rice varieties in Indonesia. The

purpose of the study was to investigate genetic diversity and identify SNPs linked to crop properties, with the

ultimate goal of improving rice varieties and ensuring food security.

A diverse Indonesian rice germplasm collection of 467 accessions, including 136 local varieties,

162 improved lines, 11 wild species, 34 near-isogenic-lines, 29 released varieties, and 95 newly introduced

varieties were used in this study. The land rice accessions were selected to represent the diverse geographic

and climatic range of the many Indonesian islands. The other accessions were chosen to build upon several

previous studies and related breeding programs.

The rice collection was extensively phenotyped for complex traits, including times to flowering and

harvest, panicle number and length, total and productive tiller, plant height, grain numbers and weight, and

yield. Our analysis herein focuses on the yield measurements, which were extrapolated to tons per hectare.

Phenotyping was conducted in three fields representing different agro-ecosystems across two planting sea-
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sons. The three fields were located in Kuningan (rainy season 2010-2011), Subang (rainy season 2011-2012),

and Citayam (rainy season 2012-2013). Regrettably, the available environmental variables (e.g., rainfall,

temperature, humidity, etc.) purported to influence yield were practically identical at these three sites. As

a consequence, this analysis only considers a field effect to account for the unmeasured confounders at the

three sites.

The rice genome is approximately 389 megabases and consists of 12 chromosomes. Genotyping

was performed on the 467 accessions using a custom Illumina high-throughput genotyping array (Golden-

Gate assay) [Pardamean et al., 2018]. The 1536 markers measured by this array were selected from several

bioinformatics resources, including the Rice-SNP-Seek Database [Alexandrov et al., 2014], an existing rice

genotyping array [Zhao et al., 2010], and the rice diversity project (www.ricediversity.org).

Genotypes were called using Illumina’s GenomeStudio software. SNPs and samples were excluded

when missing rates exceeded 25%. For the remaining 430 samples, dosages of the reference allele were

imputed using BIMBAM [Servin and Stephens, 2007] for missing genotypes. Monomorphic SNPs were

excluded, leaving 1232 SNPs. The correlation among these remaining SNPs vary in strength and are shown

in Figure 6.1. Overall, 697 yield measurements were available for joint analysis. The genetic relatedness

matrix C needed in the GGDP is graphically depicted in Figure 6.2 and was computed as described in

Section 3. The GGDP and GDP models were both fit to the data with T0 = 1000, τ1α = τ1η = 0.001,

and τ2α = τ2η = 5. Other tuning parameter choices were considered but did not produce appreciable

differences. The EM algorithm described in Section 2 was run on a Dell Optiplex 790, with a Intel Core

i7-2600 CPU 2.9GHz, and completed model fitting in approximately twenty seconds for both the GGDP

and GDP regression models. Standard techniques were employed to assess model adequacy, with no major

violations being observed; e.g., normal quantile plots indicate that the residuals from both models are near to

normally distributed (Figure 6.3).

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

The GGDP model identified that the two field variables and seven of the SNPs jointly influence

rice yield. Not surprisingly, the field effects were strong (β1 = 3.30, β2 = 3.59), suggesting that yield

is highly dependent on field factor conditions (see Table 6.8). The SNP effects were modest compared to
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the field effects. Five SNPs were associated with lower yields and two were judged to induce higher yields

(Table 6.8). In contrast, the GDP model suggests that eight SNPs and all field variables jointly influence rice

yield. There was much concordance between the estimates obtained from the two models. For differences,

the GGDP model identified S941 as influencing yield but the GDP model did not, while the GDP model

identified S664 and S1118 as influencing yield but the GGDP model did not. Table 6.8 also provides a 5-

fold cross validation statistic for each model, as a means to evaluate their predictive performance. From this

measure it appears that the GGDP model performs slightly better than the GDP model. Based on this finding

and per the discussion in Section 3, we are more confident in the GGDP model’s conclusions. It is worthwhile

to note that the effect sizes for SNPs in both models sometimes differed, suggesting that genetic relatedness

can indeed confound yield.

[Table 8 about here.]

These findings were annotated by the Rice Annotation Project [Sakai et al., 2013] and UniProt

[Consortium, 2014]. One of the SNPs, S64, is within a gene that encodes for a mitochondrial processing

peptidase (MEROP M41 family) that has been associated with cellular activities pertinent to rice growth and

development [Huang et al., 2013, Teixeira and Glaser, 2013]. The protein product of another SNP, S768, is a

mitogen-activated kinase, whose pathway plays a role in rice plant disease resistance and pathogenic defense

[Sheikh et al., 2013, Yang et al., 2015]. While not directly related to rice, the S941 SNP was found in a gene

that encodes a protein product thought to be related to the salt tolerance protein 3 in sugar beets [Trivedi

et al., 2012]. The S1014 SNP was found within a gene encoding for a pentatricopeptide repeat protein, which

is a part of a family of proteins with a wide range of roles from selection diversification [Geddy and Brown,

2007] to stress and developmental response [Sharma and Pandey, 2016] in a variety of plants, including rice.

4.5 Discussion

The introduced methods improve existing approaches for polygenic modeling of agriculture traits by

allowing for important confounding factors and repeated measurements in the model. The proposed approach

completes model selection and estimation via a Bayesian MAP estimator under the generalized double Pareto

shrinkage prior. From the hierarchical representation of our model, a computationally efficient EM algorithm

was developed for identifying the MAP estimator. The proposed methods were evaluated through an extensive

simulation study and were used to analyze data collected during a genomic association study conducted by
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the Indonesian Center for Rice Research.

A standard analysis in genomic association studies is a marginal scan, i.e., the SNPs are analyzed

one at a time. As such, a marginal analysis for each of our Section 3 simulated data sets was also conducted

based on the model in (4.4). Through this analysis, several key findings arose; first, the regression parameter

estimates were often severely biased, and second, the false discovery percentages were egregiously high,

even after applying standard multiple testing corrections in an effort to control the family-wise error rate.

Further investigations attribute this to the strong correlations between the individual SNPs considered in

our application, which are quantified in Figure 6.2. For these reasons, these results were omitted from the

manuscript; however, it is worthwhile noting that both the GGDP and GDP approaches were practically

immune to the high correlation issues that were so detrimental to the marginal approach. Given the amount

of correlation that exists, future work could be aimed at extending the proposed methodology to allow for

the penalization of groups of highly correlated variables. This could be accomplished by following the

development of the group lasso [Yuan and Lin, 2006] and/or sparse-group lasso [Simon et al., 2013].

To further disseminate this work, code written in R has been developed and is available upon re-

quest. This code could benefit plant researchers studying large genomic and crop data sets. While the data

analyzed here had limited environmental information, data collection and analysis of rice varieties is ongoing

in Indonesia. Future data will include historic and new field factors (e.g., soil, weather, etc.), crop outcomes

over seasons and locations, and genomic information on the rice varieties planted. A large database should

produce yield prediction models and drive experimental designs to validate them. Ultimately, these models

could advise farmers on optimal rice varieties for given or predicted field and climatic conditions.
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Chapter 5

A two-phase Bayesian methodology for

the analysis of binary phenotypes in

genome-wide association studies

5.1 Introduction

In genetics, a genome-wide association study (GWAS) is an observational study of a genome-wide

set of genetic markers across individuals with the intent of identifying one or more markers that are associated

with a trait of interest. For example, recent GWAS have led to the identification of common genetic variants

which are predictive of a subject’s predisposition towards colorectal cancer [Peters et al., 2015]. Regretfully,

the field of complex disease genetics has been plagued by irreproducibility with respect to marker identifi-

cation and low predictive fidelity; for further discussion see Zeggini and Ioannidis [2009]. There remains a

gap between the estimated genetic component of most complex diseases and the associated genetic variants

discovered so far [Manolio et al., 2009]. This “missing heritibility” problem cannot be completely solved by

association scans on increasing sample sizes. Methods are needed that acknowledge the inherent complexity

of both the genome and these diseases. While new approaches have emerged that attempt to aggregate results

based on linkage disequilibrium patterns [Bulik-Sullivan et al., 2015] or that use biological knowledge to

focus on relevant regions of the genome [Baurley and Conti, 2013], comprehensive genome-wide analytic

approaches are still lacking.
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In general, GWAS focuses on measuring and analyzing single-nucleotide polymorphisms (SNPs)

across the genome. Historically, researchers have primarily focused on marginal screening methods (i.e.,

one at a time analyses of the available SNPs) for the purpose of detecting associations, while appropriately

adjusting for false discoveries. This approach tends to be conservative and has the propensity to miss im-

portant joint behaviour. As a solution, the current research paradigm is shifting to SNP assessment via joint

models. This new direction also poses significant challenges; i.e., given the advances in sequencing and

genotyping technologies, modern GWAS considers millions of SNPs. From a statistical point of view, this is

the classic large p small n problem (i.e., p >> n) encountered in high-dimensional regression. In general,

high-dimensional regression techniques leverage the bias-variance trade-off by imposing penalties on the

regression coefficients. For a continuous outcome, through specifying an L1 penalty, Tibshirani [1996b] pro-

posed the LASSO which is able to identify a sparse estimator of the regression coefficients, thus completing

model fitting and variable selection simultaneously. Following the seminal work of Tibshirani [1996b], many

other proposals have been developed under other penalization schemes; e.g., see Fan and Li [2001b], Zou

and Hastie [2005b], Zou [2006b], and Candes and Tao [2007]. Extensions of penalized regression methods

have been made to generalized linear models; e.g., Wu et al. [2009] and Friedman et al. [2010] incorporated

the LASSO and elastic net penalties, respectively, when fitting the logistic regression model. Interestingly,

many of these frequentist based techniques have Bayesian analogs which make use of shrinkage priors; e.g.,

the Bayesian LASSO [Park and Casella, 2008]. In many instances, analytic and computational tractability

are aided by the fact that shrinkage priors can be represented as scale mixtures of normals; e.g., see Park and

Casella [2008] and Armagan et al. [2013a]. Though theoretically justified in the case of high-dimensional

data, the aforementioned techniques are known to struggle and provide inaccurate results when p is large

relative to n, which is unarguably the norm in GWAS. To pointedly address this feature, Yazdani and Dunson

[2015b] proposed a hybrid Bayesian approach for quantitative traits which combined the marginal scan and

joint modeling paradigms.

Motivated by the work of Yazdani and Dunson [2015b] and a recent colorectal cancer study, herein

we develop a two-phase Bayesian methodology that can be used to identify significant polygenic effects in

genome-wide association studies of binary traits. Like Yazdani and Dunson [2015b], we advocate for the use

of a preliminary scan, via Bayes factors, of the available SNPs in an effort to form a reduced set of promising

markers. These markers are then analyzed by a joint model along with other confounding variables. The

generalized double Pareto shrinkage prior of Armagan et al. [2013a] is specified for the regression coefficients

in the joint model and a sparse estimator of these quantities is obtained via a novel maximum a posteriori
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(MAP) estimation technique. For finding the MAP estimator, an expectation-maximization (EM) algorithm

is derived by introducing carefully constructed latent variables. In particular, through the introduction of

these latent variables both the data model and shrinkage prior are decomposed into a convenient hierarchical

form. The proposed methodology is thoroughly vetted through an extensive numerical study, and is further

illustrated through an analysis of a genome-wide association study of colorectal cancer in Indonesia.

The remainder of this article is organized as follows. Section 2 provides the details of the proposed

methodology to include the data augmentation steps and EM algorithm development. Section 3 provides the

results of an extensive numerical study conducted to assess the performance of the proposed methodology.

Section 4 presents the results of the analysis of the motivating colorectal cancer data. Section 5 concludes

with a summary discussion.

5.2 Methodology

In the context of the motivating example, we wish to relate a binary trait (e.g., presence/absence of

colorectal cancer) to genetic markers. Let Yi encode the binary trait for the ith individual, for i = 1, ..., n,

with the event Yi = 1 denoting that the individual is a case and Yi = 0 otherwise. Similarly, we let Eiq , for

q = 1, ..., q1, denote the qth confounding variable (e.g., age, BMI, smoking status, etc.) measured on the ith

individual. For notational ease, we aggregate these variables as Ei = (Ei1, . . . , Eiq1)′. Finally, let S∗iq , for

q = 1, ..., q∗2 , denote the qth SNP genotype of the ith individual. In order to evaluate both the confounding

variables and genetic markers, we propose the following two-phase methodology.

5.2.1 Phase 1

In Phase 1 of our approach, the genetic markers undergo a preliminary scan to identify a promising

set of possible significant genotypes, while controlling for confounding variables. More specifically, in this

phase, we seek to rank order each of the SNPs via Bayes factors. Briefly, a Bayes factor is a summary of the

evidence provided by the data for a model relative to another model. This evidence is computed as

Bq0 =

∫
Θq

pq(Y | θq)πq(θq)dθq
{∫

Θ0

p0(Y | θ0)π0(θ0)dθ0

}−1
, for q = 1, ..., q∗2 , (5.1)

where p0 and pq are binary data models (e.g., logisitic or probit regression models) for the observed data

Y = (Y1, ...., Yn)′, θ0 and θq denote collections of regression coefficients, and π0 and πq are prior dis-
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tributions. Here, the baseline model (p0) makes use of a linear predictor consisting of only linear effects

in the confounding variables, while pq considers the same and adds a linear effect associated with S∗iq , for

q = 1, ..., q∗2 . If Bq0 is large then there exists strong evidence in favor of pq when compared to p0; e.g.,

Bq0 > 20 and Bq0 > 150 offer strong and very strong evidence, respectively. In addition to comparing vari-

ous models to the baseline model, one may rank order models without the need to recompute Bayes factors.

For example, the event Bq′0 > Bq0 suggests that pq′ is favorable when compared to pq , given the available

data. In order to avoid prior influence, it is standard to specify non-informative or vague priors which are of-

ten improper. It is well known that Bayes factors should not be computed using improper priors [Wasserman,

2000], and thus we suggest the use of vague independent normal priors for the regression coefficients; i.e.,

θ0 ∼ N(0, σ2Iq1+1) and θq ∼ N(0, σ2Iq1+2), where Iq denotes a q × q identity matrix.

The multi-dimensional integrals depicted in the numerator and denominator of (5.1) are analytically

intractable and therefore have to be approximated. Many techniques for approximating such integrals have

been proposed; e.g., see Raftery [1996]. Herein, we proceed to approximate the necessary integrals through

the following Laplacian approximation:

p̂q(Y) = pq(Y | θ̃q)πq(θ̃q)|C|1/2(2π)dim(θ̃)/2 ≈
∫

Θq

pq(Y | θq)πq(θq)dθq, for q = 0, ..., q∗2 (5.2)

where θ̃q is the minimizer of h(θq) = − log{pq(Y | θq)πq(θq)}, C is the inverse of the hessian of h(·) eval-

uated at θ̃q , and the function dim(·) provides the dimension of the vector argument. Thus, an approximation

to Bq0 can be constructed as B̂q0 = p̂q(Y)/p̂0(Y). After computing this approximate Bayes factor for each

of the genetic markers, Phase 1 of our methodology concludes by rank ordering the SNPs based on B̂q0 and

retaining the top q2 as promising markers. Let the q2-dimensional vector Si = (Si1, . . . , Siq2)′ aggregate the

SNP genotypes that were identified as promising markers. In Section 5.3 we discuss a pragmatic approach

that can be used to choose the value of q2.

5.2.2 Phase 2

In this phase, we build a joint model which relates the confounding variables and all SNPs selected

in Phase 1 to the binary trait. To this end, we proceed under the following generalized linear model (GLM):

g−1{P (Yi = 1 | β0,β1,β2)} = β0 + E′iβ1 + S′iβ2, (5.3)
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where g(·) is the link function. For the purposes of this work, we allow g(·) to take on two forms (i.e.,

logisitic and probit) and provide details of implementation under each. The regression coefficients β1 =

(β11, . . . , β1q1)′ and β2 = (β21, . . . , β2q2)′ are covariate and genetic marker effects, respectively, with β0

denoting the usual intercept. Throughout, it is assumed that the independent variables (i.e., Ei and Si) have

been standardized.

To complete the proposed Bayesian GLM and to induce sparsity into the estimation of the effects

(i.e., βlq), we impose a vague independent normal prior on β0 and independent shrinkage priors on the other

regression coefficients through the following specifications:

β0 | T0 ∼ N(0, T0),

βlq | α, η ∼ GDP(ψ = η/α, α), for q = 1, . . . , ql and l = 1, 2,

where GDP(ψ, α) refers to the generalized double Pareto distribution outlined in Armagan et al. [2013a].

Under these prior choices, setting T0 to be large provides a vague prior on β0, while the hyper-parameters

α > 0 and η > 0 govern the amount of shrinkage which is imparted on the regression coefficients. In

particular, the density of the generalized double Pareto distribution becomes more peaked with lighter tails

as α is increased, while larger values of η provide for less shrinkage through a flatter density. Armagan

et al. [2013a] suggest a default setting of α = η = 1, leading to a prior density similar to that of a Cauchy

distribution. However, given the computationally efficient nature of our approach, one may explore multiple

settings for these hyper-parameters and make use of model selection criteria (e.g., AIC, BIC, cross-validation,

etc.) to choose the “optimal” configuration.

In order to avoid the computational burden of Markov chain Monte Carlo in high dimensions and to

identify a sparse estimator of the regression coefficients, we develop a computationally efficient EM algorithm

that can be used to compute the MAP estimator. To develop this algorithm, we introduce two different sets

of latent variables which allow us to decompose both the proposed data model and shrinkage priors into a

convenient hierarchical representation. In particular, a hierarchical representation of the proposed data model

is formed by introducing latent random variables ωi, for i = 1, ..., n. The specific structure of these random

variables is inherently tied to the chosen link function, with the distribution of ωi being normal or Pólya

gamma if one proceeds under the probit or logistic link, respectively; for further details see Albert and Chib

[1993] and Polson et al. [2013]. Under either specification, the joint density of the observed and latent data
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is given by

π(Y,ω | β) ∝ exp

{
−1

2
(h−Xβ)′Ω(h−Xβ)

} n∏
i=1

ξ(ωi), (5.4)

where ω = (ω1, ..., ωn)′, β = (β0,β
′
1,β
′
2)′, X = (X1, ...,Xn)′, and Xi = (1,E′i,S

′
i)
′. Under the probit

link, h = (ω1, ..., ωn)′, Ω = I, and ξ(ωi) = I(ωi ≥ 0, Yi = 1) + I(ωi < 0, Yi = 0), where I(·) denotes

the usual indicator function. In contrast, under the logistic link, h = (κ1/ω1, ..., κn/ωn)′, κi = Yi − 1/2,

Ω = diag(ω), and ξ(ωi) = f(ωi | 1, 0) exp{κ2i /(2ωi)}, where f(ωi | a, b) denotes the Pólya-Gamma

density with parameters (a, b); see Polson et al. [2013].

Attention is now turned to constructing a hierarchical representation of the joint prior distribution.

As noted by Proposition 1 in Armagan et al. [2013a], the generalized double Pareto shrinkage prior can be

represented as a scale mixture of normal distributions. Thus, for the regression coefficients, the following

hierarchical representation provides for the same prior specifications as those given above:

β | T ∼ N(0,T),

Tlq | λlq ∼ Exponential(λ2lq/2), for q = 1, . . . , ql and l = 1, 2,

λlq | α, η ∼ Gamma(α, η), for q = 1, . . . , ql and l = 1, 2,

where T = diag(T0,T
′
1,T

′
2) and Tl = (Tl1, ..., Tlql)

′. Here the rate parametrization of both the exponential

and gamma distributions are utilized.

Given these hierarchical representations, our proposed EM algorithm can be derived viewing ω, T,

and λlq, for q = 1, . . . , ql and l = 1, 2, as missing data. The E-step of our algorithm identifies the function

Q(·, ·) as the conditional expectation of the natural logarithm of the posterior distribution, given the observed

data (denoted as D) and the current set of parameter estimates (denoted as β(d)). This yields

Q(β,β(d)) =− 1

2
E{(h−Xβ)′Ω(h−Xβ) | D,β(d)}

− 1

2
β2
0T
−1
0 − 1

2

2∑
l=1

ql∑
q=1

β2
lqE(T−1lq | D,β

(d)) +Qr(β
(d)), (5.5)

whereQr(β(d)) is a function which is free of β. The M-step of the algorithm then updates the set of unknown

parameters as the maximizer of Q(·, ·). Given the form of (5.5), the maximizer obtained in the M-step of the
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algorithm is given by

β(d+1) = (X′Ω(d)X + D(d))−1X′Ω(d)h(d) = argmaxβQ(β,β(d)), (5.6)

where D(d) = E(T−1 | D,β(d)) and E(T−1lq | D,β(d)) = (α + 1)/{|β(d)
lq |(|β

(d)
lq | + η)}. The form

of Ω(d) and h(d) in (5.6) are link function dependent. In particular, under the probit link Ω(d) = I and

h(d) = E(ω | D,β(d)), where

E(ωi | D,β(d)) = X′iβ
(d) + Yiφ(X′iβ

(d)){Φ(X′iβ
(d))}−1

− (1− Yi)φ(X′iβ
(d)){1− Φ(X′iβ

(d))}−1,

with φ(·) and Φ(·) denoting the density and cumulative distribution functions of the standard normal dis-

tribution, respectively. Under the logistic link Ω(d) = E(Ω | D,β(d)) and h(d) = (Ω(d))−1κ, where

κ = (κ1, ..., κn)′ and

E(ωi | D,β(d)) = {P (Yi = 1 | β(d))− 0.5}(X′iβ
(d))−1.

Thus, the proposed EM algorithm continues to update β(d) via these two steps until convergence is attained;

see Abbi et al. [2008] for a discussion on convergence criterion. At the point of convergence, the final

update of β(d) is our sparse MAP estimator. For computational reasons, it is important to note that due to

the carefully constructed hierarchical representations provided above, we are able to identify closed form

expressions for all of the necessary expectations in (5.5) as well as to compute closed form updates of the

regression coefficients in the M-step given in (5.6).

From a computational perspective, the proposed approach has a few key attributes which are worth

outlining. First, due to the nature of the penalty arising from the GDP prior, once a regression coefficient is

dropped from the model (i.e., is set to zero), it cannot return. This fact can be exploited to reduce the number

of computational steps required to compute β(d), thus alleviating a computational bottle neck. Second, in

scenarios where p >> n, with p = 1 + q1 + q2, which are common among GWAS, the computationally

expensive aspect of the proposed EM algorithm involves the inversion of a p × p dense matrix in order to

compute β(d). This computational burden can be avoided by exploiting the Sherman-Morrison-Woodbury

formula, which allows one to effectively compute the inversion of the p×p matrix at the same computational
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expense as inverting a n× n matrix. Specifically, we may compute the necessary inversion in (5.6) as

(X′Ω(d)X + D(d))−1 = D(d)−1

−D(d)−1

X′(Ω(d)−1

+ XD(d)−1

X′)−1XD(d)−1

,

where the inversion of D(d) and Ω(d) are trivial since they are diagonal matrices and the other matrix inversion

step on the right-hand side involves only an n × n matrix. Lastly, the proposed EM algorithm can easily,

through the point of initialization, accommodate warm starts [Koh et al., 2007] when fitting models for

multiple specifications of the hyper-parameters α and η.

5.3 Numerical studies

In order to evaluate the finite sample performance of the proposed approach, the following simula-

tion study was conducted. Given that Bayes factors are a common tool and have been well vetted, this study

focuses on assessing the performance of the MAP estimator developed in Section 5.2.2. The assessed char-

acteristics include the method’s ability to 1) identify significant covariates under various signal strengths, 2)

accurately estimate the effect size of significant covariates, 3) classify covariates not related to the response

as such, and 4) capably handle the complex data structures that are ubiquitous in GWAS. To accomplish

this, datasets were simulated to mimic our motivating application; i.e., we consider simulating data for n

individuals, where n ∈ {200, 500}. For each individual, we simulate the collection of confounding variables

Ei = (Ei1, Ei2), whereEi1 andEi2 are standardized draws that were sampled independently from aN(0, 1)

and Bernoulli(0.5) distribution, respectively. For this study, we consider SNP vectors of various lengths for

the different sample sizes; specifically, we consider q2 ∈ {100, 200, 500}. Rather than randomly generating

these variables, we make use of the SNP data from our motivating example. Proceeding in this fashion allows

us to capture the complex SNP relationships that naturally exist and would be hard to simulate. To have

adequate representation with respect to minor allele frequency, SNPs were first classified according to their

minor allele frequency into one of two categories: low (0.20-0.35) and high (0.35-0.50). Then, at random,

the q2 SNPs used in this study were selected from the two categories, with equal representation being taken

from each. Let Si denote the vector of selected SNPs for subject i, after standardization. The individuals’

statuses were then simulated according to the following model:

g−1{P (Yi = 1 | β0,β1,β2)} = β0 + E′iβ1 + S′iβ2,
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where β0 = −1, β1 = (1, 1)′, β2 = (β∗,β∗,0′q2−12)′, β∗ = (0.25, 0.25, 0.5, 0.5, 1.0, 1.0), 0q is a q-

dimensional vector of zeros, and g(·) is the logistic link. This data generating process was used to create 500

independent data sets.

A few comments on the design of this study are warranted. First, the SNPs Si1 through Si6 were

selected from the low minor allele frequency category and SNPs Si7 through Si12 were selected from the

high frequency category. This allows us to examine the ability of the proposed approach to identify small

(0.25), medium (0.50), and large (1.00) effects across these different allelic frequencies. Second, this study

focuses on the logistic link. Complementary studies were performed under the probit link and resulted in a

practically identical conclusion and are therefore omitted for purposes of brevity.

The proposed methodology was used to analyze each of the generated data sets. In this implementa-

tion, a vague prior was placed on the intercept by specifying T0 = 1000 and we considered different values of

the penalty parameters; i.e., α ∈ {0.1, 0.2, ..., 1.0} and η ∈ {0.1, 0.2, 0.3}. These choices were made based

on prior experience which showed that η should be set to a small value and that values of α ∈ (0.1, 1) per-

form well for binary outcomes. It is important to note that a MAP estimator is computed under each of these

hyper-parameter configurations. Thus, to choose the “best” from among them we make use of the Bayesian

information criterion [Neath and Cavanaugh, 2012]. The computational expense associated with identifying

all of the MAP estimators under the various configuration of (α, η) was minimal and scalable.

Table 6.9 summarizes the MAP estimators that were obtained from analyzing the 500 data sets when

n = 200. This summary includes the empirical bias and standard deviation of the MAP estimators of the truly

nonzero coefficients, as well as the percentage of the time that they were identified to be nonzero; i.e., the

percentage of time that they were found to be related to the response. We also summarize the false discovery

proportion which we define to be the proportion of coefficients which are truly zero but are identified to

be nonzero by the MAP estimator. Table 6.10 provides an analogous summary when n = 500. From

these results, one can see that the proposed approach can be used to reliably identify important explanatory

variables as well as estimate their effects. In general, the observed bias is small and is on the same scale as

the bias resulting from the oracle model (results not shown); i.e., the model which is provided the correct set

of covariates. Moreover, the bias tends to fade as the sample size increases and more importantly does not

tend to grow rapidly in the number of considered variables; i.e., in q2. With respect to selection accuracy, for

smaller sample sizes (e.g., n = 200) the proposed approach can aptly and reliably detect moderate and strong

signals, across different allelic frequencies and values of q2. The ability to detect smaller signals improves,

as one would imagine, when a larger sample size is available. Further, the small false discovery proportions
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convey that the proposed approach is capable of identifying unrelated coefficients as being such. Finally,

Tables 6.9 and 6.10 also report the average time required to compute the MAP estimator that minimizes BIC

over the considered (α, η) combinations. From these results, one can see that the proposed approach is both

computationally efficient and scalable. In summary, this study has demonstrated the strengths of the proposed

MAP estimator with regard to identifying coefficients that are truly related to a binary response. These results

also serve to indicate that Phase 1 of our methodology should be used to create a set of candidate SNPs which

are on the same order as the available sample size.

[Table 9 about here.]

[Table 10 about here.]

5.4 Colorectal cancer data

Colorectal cancer is one of the most common forms of cancer and is a leading cause of cancer

related deaths [Jemal et al., 2011]. Genetic association studies have previously identified markers associated

with colorectal cancer risk, but have predominantly focused on subjects from European ancestory. Given

the potential differences between South East Asia and European ancestry, a recent study conducted in South

Sulawesi, Indonesia was aimed at investigating the genetic and environmental risk factors of colorectal cancer

within this South East Asian population. To aid in the discovery of genetic and environmental risk factors,

the analysis presented herein focuses on data arising from this seminal study.

The data available for this analysis consists of 173 observations which were taken on 84 cases and

89 controls. These participants were recruited from throughout Makassar, Indonesia between the years of

2014 and 2016. Environmental risk factor information was collected via voluntary questionnaires and medi-

cal records. This information includes, but is not limited to, demographics, family history, smoking behavior,

alcohol use, and dietary history. To collect genetic information, each participant provided a blood sample

for genotyping. DNA was extracted from these samples at Mochtar Riady Institute for Nanotechnology

Laboratory in Tangerang, Indonesia. After extraction, the DNA was sent to RUCDR Infinite Biologics for

genotyping (Piscataway, NJ, USA). Genotyping was completed using the Smokescreen Genotyping Array

(BioRealm LLC). Analysis of the raw data was performed using Affymetrix Power tools (APT) v-1.16 ac-

cording to the Affymetrix best practices workflow. Additional quality control steps were performed using

SNPolisher to identify and select best performing probe sets and high quality SNPs for analysis. After QC
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filtering, 495,532 SNPs remained for analysis.

To reduce the number of candidate SNPs, Phase 1 of our methodology was used to conduct a pre-

liminary scan of the SNP data, while accounting for environmental risk factors. In this analysis, we control

for gender (1=male, 0=female), age (in years), body mass index (BMI), and smoking status (1=Yes, 0=No).

In the specification of the Bayes factors, the prior variance (i.e., σ2) was set to be 100 to provide a vague, yet

proper, prior on the regression coefficients. Figure 6.4 provides a histogram of the Bayes factors associated

with the 495,532 SNPs and Figure 6.5 provides a plot of the same across chromosomes. From this initial

phase, and the results obtained in Section 5.3, we decided to focus attention on the top 200 SNPs; i.e., the

SNPs with largest associated Bayes factors. This set of candidate SNPs are denoted as triangles in Figure 6.5.

In Phase 2, we fit the following first order model to the data:

logit{P (Yi = 1 | β0,β1,β2)} = β0 + E′iβ1 + S′iβ2,

where Ei is the vector of environmental risk factors, and Si is the vector of top SNPs identified in Phase 1

for the ith participant. Note that all variables in Ei and Si were standardized. Here, Ei = (Ei1, ..., Ei4)′,

where Ei1 denotes standardized gender, Ei2 denotes standardized age, Ei3 denotes standardized BMI, and

Ei4 denotes standardized smoking status. The proposed EM algorithm was used to fit this model and

identify the hyper-parameter dependent MAP estimator for each considered configuration of (α, η), where

α ∈ {0.1, 0.2, ..., 1.0} and η ∈ {0.1, 0.2, 0.3} with T0 = 1000. Final model selection, as in Section 5.3, was

guided by the Bayesian information criterion.

[Figure 4 about here.]

[Figure 5 about here.]

Table 6.11 presents the results of this analysis. These results include the chromosome number, coor-

dinate, reference allele, minor allele frequency, and estimated effect for all SNPs identified by the proposed

MAP estimator to be the related to colorectal cancer. Also included are effect estimates for the considered

environmental risk factors. First, the interpretation of the results pertaining to the environmental risk factors

should be made cautiously. That is, by design, the study at enrollment frequency matched cases and controls

based on age, sex, and ethnicity. Thus, the interpretation of the findings associated with the various environ-

mental risk factors is limited but important to take account of when assessing genetic risk factors. Second,

this analysis identified 10 SNPs which appear to have a relatively strong association (i.e., large effect size)
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with the risk of developing colorectal cancer. Four of these SNPs lie in intergenic regions; four lie in introns

of ARHGEF3, PLCG2, RGMB, and CTC-340A15.2; one is a deletion in PIGN; and one is an insertion in

SHISA9. ARHGEF3 has been implicated in promoting nasopharyngeal carcinoma in Asians Liu et al. [2016].

RGMB has been shown to promote colorectal cancer growth Shi et al. [2015].

[Table 11 about here.]

5.5 Discussion

Motivated by a recent study aimed at assessing environmental and genetic risk factors associated

with colorectal cancer, we have proposed a Bayesian two-phase methodology for the analysis of binary phe-

notypes in GWAS. Phase 1 of our methodology makes use of a preliminary scan, via Bayes factors, of the

available SNPs. The primary goal of this phase is to render a reduced set of promising markers. These mark-

ers are then analyzed via a joint model along with other confounding variables in Phase 2. Through utilizing

the generalized double Pareto shrinkage prior and constructing a novel EM algorithm, we are able to develop

a computationally efficient approach to identifying a sparse MAP estimator. The performance of the pro-

posed methodology has been illustrated thorough an extensive numerical study, and was used to analyze the

motivating cancer data. Through this application, 10 SNPs were identified to be associated with colorecetal

cancer via the proposed approach. To further disseminate this work, scripts written in R which implement all

aspects of these techniques have been developed and are available in the supporting information accompany-

ing this work, while the motivating colorectal cancer data is available either from the corresponding author

upon request or from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO).

Given statistical limitations with respect to the classic large p small n problem and recent advances

in sequencing and genotyping technologies, it is natural to believe that two-phase methodologies such as the

one proposed here will become standard in GWAS. For this reason, future work could be aimed at examining

different marginal analysis techniques that could be used to identify a reduced set of promising SNPs. This

could be accomplished by using sparse estimation techniques (e.g., LASSO, elastic net, etc.) or through

adopting ideas from the recent advances in polygenic risk scores Dudbridge [2013]. Though prescan tech-

niques, such as Phase 1 of the proposed approach, are common [e.g., see Wang et al., 2018], it is important to

note that they in fact limit the set of candidate variables that can be considered in the joint model; i.e., once a

set of candidate SNPs have been identified additions in Phase 2 are not considered. For this reason, it could

be of interest to merge the goals of Phase 1 and 2 into a more flexible formulation that would allow one to
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consider all available SNPs in the joint model. With that being said, an approach of this nature would likely

pose many challenges from both a methodological and a computational perspective.
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Chapter 6

Discussion

This dissertation provides a thorough set of Bayesian methodologies for high dimensional and com-

plicated data. Chapters 2 and 3 outline how to analyze complicated group testing data with a mixed effects

model while simultaneously achieving full variable selection in the fixed effects and random effects. These

models are then used to analyze the motivating data set provided by the State Hygienic Laboratory in Iowa,

where Iowa citizens are screened for chlamydia and gonorrhea. Furthermore, Chapter 2 reveals that when

the random effects are ignored, the result is lower classification accuracy. Chapter 4 outlines a Bayesian

linear mixed effects model that relates single-nucleotide polymorphisms (SNPs) of rice plants to the amount

of yield produced. This data was provided by fields in Indonesia in a local breeding effort to produce more

rice. Chapter 5 concludes this dissertation by developing a Bayesian logistic regression model to associate

human SNPs and covariate information to individual probabilities of having colorectal cancer. In analyzing

the colorectal cancer data with this model, 10 SNPs were identified to be significant with relatively large

magnitude. This provides grounds for possible exploration from practitioners in an effort to better detect

colorectal cancer in patients.
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Appendix A Supplementary Material for Chapter 2

A.1 Full conditional distributions and posterior sampling

Herein we provide the specific form of the full conditional distributions required to complete our posterior

sampling algorithm. We then outline the step-by-step implementation of the posterior sampling algorithm

under the three considered spike and slab priors.

Full conditional of λl: Define the q2 × 1 vectors ei, i = 1, ..., N, with lth entry given by eil = tilbk(i)l +

til
∑l−1
m=1 bk(i)malm so that the linear predictor can be expressed as

x′iβ + t′iΛAbk(i) = x′iβ + e′iλ.

Then the full conditional distribution of λl is given by

λl | Ỹ,ω,β,λ−l,a,b, wl ∼ TN{µλl
(wl), σ

2
λl

(wl), (0,∞)},

where the mean and variance are

µλl
(wl) = (E′lΩEl + 1/{r(wl)ψ2

l })−1E′lΩhλl

σ2
λl

(wl) = (E′lΩEl + 1/{r(wl)ψ2
l })−1,

and E is the N × q2 matrix with ith row ei, El is the lth column of E, E−l is all columns except for the lth

column, and hλl
= h−Xβ −E−lλ−l.

Full conditional of a: For each individual i = 1, ..., N , define the q2(q2−1)/2×1 vector ui = (bk(i)lλmtim : l =

1, ..., q2 − 1;m = l + 1, ..., q2)′ so that the linear predictor becomes

x′iβ + t′iΛAbk(i) = x′iβ + t′iΛbk(i) + u′ia.

The full conditional distribution of a is then given by

a | Ỹ,ω,β,λ,b ∼ N(µa,Σa),
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where the mean and covariance matrix is

µa = (U′ΩU + C−10 )−1(U′Ωha + C−10 m0)

Σa = (U′ΩU + C−10 )−1,

and U is a matrix with rows ui and ha = (hi − x′iβ − t′iΛbk(i) : i = 1, ..., N)′.

Full conditional of bk: Note that only individuals tested at site k contribute to the posterior distribution of

bk. Thus define the index set Sk = {i : bk(i) = bk}; i.e., the index set Sk identifies the individuals tested at

site k. Define M(S) to be the matrix formed by retaining the rows of the matrix M identified by the index

set S; with the analogous extension for vectors. Thus, the full conditional distribution of bk is given by

bk | Ỹ,ω,β,λ,a ∼ N(µbk
,Σbk

),

where the mean and covariance matrix is

µbk
= (A′ΛT′kΩkTkΛA + I)−1A′ΛT′kΩk(hk −Xkβ)

Σbk
= (A′ΛT′kΩkTkΛA + I)−1,

and Tk = T(Sk), hk = h(Sk), Xk = X(Sk), and Ωk = Ω(Sk).

Full conditional of vq: For SSVS and NMIG, the full conditional distribution for vq is Bernoulli with success

probability pvq ; i.e., vq | βq, τvq ∼ Bernoulli(pvq ), where

pvq =
πslab(βq)τvq

πspike(βq)(1− τvq ) + πslab(βq)τvq
.

Under the Dirac spike, we draw v from its marginal posterior, which is obtained after integrating over β; i.e.,

π(v | Ỹ,ω,λ,a,b) ∝ π(v)

∫
π(Z, Ỹ,ω | β,λ,a,b)π(β | v)dβ

∝ π(v)π(Z, Ỹ,ω | λ,a,b,v),
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where

π(Z, Ỹ,ω | λ,a,b,v) ∝ |Φv|−1/2|Σv|−1/2 exp

{
−1

2

[
h′βΩhβ − µ′vΣvµv

]}
,

and Σv = X′vΩXv + Φ−1v and µv = Σ−1v X′vΩhβ. It is worth noting that if v = 0, then this marginalized

likelihood reduces to exp
{
− 1

2h′βΩhβ

}
. Thus, it is easy to see that the full conditional distribution of vq ,

after marginalizing over β, is Bernoulli, with success probability pvq ; i.e., vq | Ỹ,ω,λ,a,b,v−q, τvq ∼

Bernoulli(pvq ), where

pvq =
π(Z, Ỹ,ω | λ,a,b,v−q, vq = 1)τvq

π(Z, Ỹ,ω | λ,a,b,v−q, vq = 0)(1− τvq ) + π(Z, Ỹ,ω | λ,a,b,v−q, vq = 1)τvq
.

Full conditional of wl: For SSVS and NMIG, the full conditional distribution for wl is Bernoulli, with

success probability pwl
; i.e., wl | λl, τwl

∼ Bernoulli(pwl
), where

pwl
=

πslab(λl)τwl

πspike(λl)(1− τwl
) + πslab(λl)τwl

.

Under the Dirac spike, we draw wl from its marginal posterior, which is obtained after integrating over λl;

i.e.,

π(wl | Ỹ,ω,β,λ−l,a,b) ∝ π(wl)

∫
π(Z, Ỹ,ω | β,λ,a,b)π(λl | wl)dλl

∝ π(wl)π(Z, Ỹ,ω | β,λ−l,a,b, wl),

where

π(Z, Ỹ,ω | β,λ−l,a,b, wl) ∝ 2ψ−1l σl{1− Φ(−µl/σl)} exp

{
−1

2

[
h′λl

Ωhλl
− µ2

l /σ
2
l

]}
,

and σ2
l = (E′lΩEl + 1/ψ2

l )−1, µl = σ2
l E
′
lhλl

, and Φ(·) denotes the cumulative distribution function of a

standard normal random variable. It is worth noting that if wl = 0, then this marginalized likelihood reduces

to exp
{
− 1

2h′λl
Ωhλl

}
. Thus, it is easy to see that the full conditional distribution of wl, after marginalizing

over λl, is Bernoulli with success probability pwl
; i.e., wl | Ỹ,ω,β,λ−l,a,b, τwl

∼ Bernoulli(pwl
), where

pwl
=

π(Z, Ỹ,ω | β,λ−l,a,b, wl = 1)τwl

π(Z, Ỹ,ω | β,λ−l,a,b, wl = 0)(1− τwl
) + π(Z, Ỹ,ω | β,λ−l,a,b, wl = 1)τwl

.
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Posterior sampling algorithm under SSVS:

1. Initialize β(0), λ(0), a(0), v(0), w(0), Ỹ(0), b
(0)
k , τ (0)vq , and τ (0)wl for all k = 1, ...,K, q = 1, ..., q1, and

l = 1, ..., q2. If estimating assay accuracies, then initialize S
(0)
e and S

(0)
p ; otherwise set S

(t)
e = Se and

S
(t)
p = Sp for all t, where Se and Sp are known. Set t = 1.

2. For i = 1, .., N , do one of the following:

a. If using probit link, sample h(t)i = ω
(t)
i ∼


TN{ηi, 1, (0,∞)}, if Ỹ (t−1)

i = 1

TN{ηi, 1, (−∞, 0)}, if Ỹ (t−1)
i = 0

b. If using logistic link, sample ω(t)
i ∼ PG(1, ηi), and set h(t)i = (Ỹ

(t−1)
i − 1/2)/ω

(t)
i

where ηi is evaluated at β(t−1), λ(t−1), a(t−1), and b
(t−1)
k(i) . Aggregate ω(t) = (ω

(t)
1 , ..., ω

(t)
N )′ and

h(t) = (h
(t)
1 , ..., h

(t)
N )′. Set Ω(t) = I under probit or Ω(t) = diag(ω(t)) under logistic.

3. Sample β(t) ∼ N
{(

X′Ω(t)X + Φ−1
)−1

X′Ω(t)hβ,
(
X′Ω(t)X + Φ−1

)−1}
, where hβ is evaluated

at h(t), λ(t−1), a(t−1), b
(t−1)
k(i) for i = 1, ..., N , and Φ is evaluated at v(t−1).

4. For l = 1, ..., q2, sample λ(t)l ∼ TN{µλl
(w

(t−1)
l ), σ2

λl
(w

(t−1)
l ), (0,∞)}, where the mean and variance

are evaluated at a(t−1), Ω(t), h(t), β(t), λ(t)1 , ..., λ
(t)
l−1, λ

(t−1)
l+1 , ..., λ

(t−1)
q2 , and b

(t−1)
k(i) for i = 1, ..., N .

Aggregate λ(t) = (λ
(t)
1 , ..., λ

(t)
q2 )′.

5. Sample a(t) ∼ N(µa,Σa), where the mean and covariance matrix are evaluated atλ(t),Ω(t),h(t),β(t),

and b
(t−1)
k(i) for i = 1, ..., N .

6. For k = 1, ...,K, sample b
(t)
k ∼ N(µbk

,Σbk
), where the mean and covariance matrix are evaluated

at a(t),λ(t),Ω
(t)
k ,h(t), and β(t).

7. For q = 1, ..., q1, sample v(t)q ∼ Bernoulli(pvq ), where pvq is evaluated at β(t)
q and τ (t−1)vq .

Aggregate v(t) = (v
(t)
1 , ..., v

(t)
q1 )′.

8. For l = 1, ..., q2, sample w(t)
l ∼ Bernoulli(pwl

), where pwl
is evaluated at λ(t)l and τ (t−1)wl .

Aggregate w(t) = (w
(t)
1 , ..., w

(t)
q2 )′.

9. For q = 1, ..., q1 and l = 1, ..., q2, sample τ (t)vq ∼ Beta(av + v
(t)
q , 1− v(t)q + bv) and

τ
(t)
wl ∼ Beta(aw + w

(t)
l , 1− w(t)

l + bw).
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10. If estimating testing assay accuracies, then sample S(t)
e(m) ∼Beta(a?e(m), b

?
e(m)) and S(t)

p(m) ∼Beta(a?p(m), b
?
p(m))

for m = 1, ...,M , where a?e(m), b
?
e(m), a

?
p(m), and b?p(m) are evaluated at Ỹ(t−1). Aggregate S

(t)
e =

(S
(t)
e(1), ..., S

(t)
e(M))

′ and S
(t)
p = (S

(t)
p(1), ..., S

(t)
p(M))

′.

11. For i = 1, ..., N , sample Ỹ (t)
i ∼ Bernoulli{p?i1/(p?i0 + p?i1)}, where p?i0 and p?i1 are evaluated at

Ỹ
(t)
1 , ..., Ỹ

(t)
i−1, Ỹ

(t−1)
i+1 , ..., Ỹ

(t−1)
N , β(t), λ(t), a(t), b(t)

k(i), S
(t)
e , and S

(t)
p . Aggregate Ỹ(t) = (Ỹ

(t)
1 , ..., Ỹ

(t)
N )′.

12. Increment t and return to step 2.

Posterior sampling algorithm under NMIG:

Refer to the SSVS sampling algorithm. During step 1, also initialize φ2(0)q and ψ
2(0)
l for q =

1, ..., q1 and l = 1, ..., q2. Complete steps 2 through 11 using φ2(t−1)q and ψ2(t−1)
l where necessary. Then

sample φ2(t)q ∼ Inv-Gamma(aφ + 1/2, bφ + β
(t)2
q /{2r(v(t)q )}) and ψ2(t)

l ∼ Inv-Gamma(aψ + 1/2, bψ +

λ
(t)2
l /{2r(w(t)

l )}) for all q and all l.

Posterior sampling algorithm under Dirac:

1. Initialize β(0), λ(0), a(0), v(0), w(0), Ỹ(0), b
(0)
k , τ (0)vq , and τ (0)wl for all k = 1, ...,K, q = 1, ..., q1, and

l = 1, ..., q2. If estimating assay accuracies, then initialize S
(0)
e and S

(0)
p ; otherwise set S

(t)
e = Se and

S
(t)
p = Sp for all t, where Se and Sp are known. Set t = 1.

2. For i = 1, .., N , do one of the following:

a. If using probit link, sample h(t)i = ω
(t)
i ∼


TN{ηi, 1, (0,∞)}, if Ỹ (t−1)

i = 1

TN{ηi, 1, (−∞, 0)}, if Ỹ (t−1)
i = 0

b. If using logistic link, sample ω(t)
i ∼ PG(1, ηi), and set h(t)i = (Ỹ

(t−1)
i − 1/2)/ω

(t)
i

where ηi is evaluated at β(t−1), λ(t−1), a(t−1), and b
(t−1)
k(i) . Aggregate ω(t) = (ω

(t)
1 , ..., ω

(t)
N )′ and

h(t) = (h
(t)
1 , ..., h

(t)
N )′. Set Ω(t) = I under probit or Ω(t) = diag(ω(t)) under logistic.

3. Set β(t)
q = 0 if v(t−1)q = 0. Sample the remaining nonzero βq’s from

β
(t)
v ∼ N

{(
X′vΩ

(t)Xv + Φ−1v
)−1

X′vΩ
(t)hβ,

(
X′vΩ

(t)Xv + Φ−1v
)−1}

, where hβ is evaluated at

h(t), λ(t−1), a(t−1), and b
(t−1)
k(i) for i = 1, ..., N .

4. For l = 1, ..., q2, set λ(t)l = 0 if w(t−1)
l = 0; otherwise sample

λ
(t)
l ∼ TN{µλl

(w
(t−1)
l ), σ2

λl
(w

(t−1)
l )}, where the mean and variance are evaluated at a(t−1), Ω(t),

h(t), β(t), λ(t)1 , ..., λ
(t)
l−1, λ

(t−1)
l+1 , ..., λ

(t−1)
q2 , and b

(t−1)
k(i) for i = 1, ..., N . Aggregateλ(t) = (λ

(t)
1 , ..., λ

(t)
q2 )′.
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5. Sample a(t) ∼ N(µa,Σa), where the mean and covariance matrix are evaluated at λ(t), Ω(t), h(t),

β(t), and b
(t−1)
k(i) for i = 1, ..., N .

6. For k = 1, ...,K, sample b
(t)
k ∼ N(µbk

,Σbk
), where the mean and covariance matrix are evaluated

at a(t),λ(t),Ω
(t)
k ,h(t), and β(t).

7. For q = 1, ..., q1, sample v(t)q ∼ Bernoulli(pvq ), where pvq is evaluated at v(t)1 , ..., v(t)q−1, v(t−1)q+1 , ...,

v
(t−1)
q1 , λ(t), a(t), h(t), Ω(t), τ (t−1)vq , and b

(t)
k(i) for i = 1, ..., N . Aggregate v(t) = (v

(t)
1 , ..., v

(t)
q1 )′.

8. For l = 1, ..., q2, sample w(t)
l ∼ Bernoulli(pwl

), where pwl
is evaluated at w(t)

1 , ..., w(t)
l−1, w(t−1)

l+1 , ...,

w
(t−1)
q2 , β(t), λ(t)

−l , a
(t), h(t), Ω(t), τ (t−1)wl , and b

(t)
k(i) for i = 1, ..., N . Aggregatew(t) = (w

(t)
1 , ..., w

(t)
q2 )′.

9. For q = 1, ..., q1 and l = 1, ..., q2, sample τ (t)vq ∼ Beta(av + v
(t)
q , 1− v(t)q + bv) and

τ
(t)
wl ∼ Beta(aw + w

(t)
l , 1− w(t)

l + bw).

10. If estimating testing assay accuracies, then sample S(t)
e(m) ∼Beta(a?e(m), b

?
e(m)) and S(t)

p(m) ∼Beta(a?p(m), b
?
p(m))

for m = 1, ...,M , where a?e(m), b
?
e(m), a

?
p(m), and b?p(m) are evaluated at Ỹ(t−1). Aggregate S

(t)
e =

(S
(t)
e(1), ..., S

(t)
e(M))

′ and S
(t)
p = (S

(t)
p(1), ..., S

(t)
p(M))

′.

11. For i = 1, ..., N , sample Ỹ (t)
i ∼ Bernoulli{p?i1/(p?i0 + p?i1)}, where p?i0 and p?i1 are evaluated at

Ỹ
(t)
1 , ..., Ỹ

(t)
i−1, Ỹ

(t−1)
i+1 , ..., Ỹ

(t−1)
N , β(t), λ(t), a(t), b(t)

k(i), S
(t)
e , and S

(t)
p . Aggregate Ỹ(t) = (Ỹ

(t)
1 , ..., Ỹ

(t)
N )′.

12. Increment t and return to step 2.

A.2 Robustness to conditional independence assumption

Equation (2.3) in the corresponding manuscript is developed under the assumption that the testing

outcomes are conditionally independent given the true status of the pools. This assumption could be ques-

tionable in situations where retesting is performed (e.g., DT and AT). To examine the performance of our

approach under violations of this assumption, we simulated group testing data with highly dependent testing

outcomes. That is, we first generate N = 5000 true individual statuses Ỹi as in Section 5 of the manuscript.

To generate the testing outcomes Zj , we then generate an additional variable Ci for each individual based on

their true status; specifically,

Ci = C+
i Ỹi + C−i (1− Ỹi),

where C+
i ∼ N(1, 0.2) and C−i ∼ N(0.1, 0.02). These two normal distributions can be regarded as under-

lying assay biomarker distributions for truly positive and truly negative individuals, respectively. The testing
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outcomes were then defined by Zj = I(|Pj |−1
∑
i∈Pj

Ci > t0), where |Pj |−1
∑
i∈Pj

Ci denotes the av-

erage biomarker concentration of the jth pool and t0 = 0.2 is a diagnostic threshold. We used the same

threshold value for both DT and AT. Proceeding in this manner leads to a clear violation of the conditional

independence assumption. As in the studies outlined in Section 5, two sets of unknown assay accuracies were

considered: Se(1) and Sp(1) for master pools and Se(2) and Sp(2) for individuals. This process was used to

simulate 1000 data sets, each of which was analyzed using the proposed approach in the exact same manner

as was outlined in Section 5 of the corresponding manuscript. Given its performance, these studies solely

focused on the performance of the proposed approach under the Dirac spike.

Table 6.19 summarizes the results of the robustness study. When comparing Table 6.19 to Table 6.2

of the manuscript, one will note that our estimation methods are not unduly impacted even when faced with

extreme violations of the conditional independence assumption. That is, the bias of the estimated coefficients

is still small on average, the values of SSD remain on par with that of Table 6.2, and variable selection is

practically identical between studies.

A.3 R code for posterior sampling

Our group testing research website www.chrisbilder.com/grouptesting contains R pro-

grams that implement the methods in this paper. One can reproduce, up to MCMC error, our simulation

results in Section 5 for SSVS, NMIG, and the Dirac spike. The provided files include the source files

(BayesLogit 0.6.tar) to install the Bayeslogit package, six C++ routines that are intergal parts

of the model fitting process, and three user friendly main functions that implement the proposed methods,

one each for the three considered spike and slab configurations. The inputs for each main function are iden-

tical, and the inputs and outputs are described below.

Inputs: The following inputs are supplied to this function:
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G: Matrix of testing responses whose jth row is of the form (Zj , cj ,m,Pj ,O), where

Zj is the observed testing response for the jth pool, cj is the number of individuals in

the jth pool, m refers to which assay is used to test the jth pool, and Pj is a vector

of indices that identifies which individuals are within the jth pool. Note that O is a

vector of unused values required to complete the dimensions of the matrix.

Y: Matrix of individual statuses whose ith row is of the form (Ỹ
(0)
i , |Ii|, k(i), Ii,O),

where Ỹ (0)
i is the initial value for the ith individual’s status (if the group testing algo-

rithm results in a diagnosed status, one could specify Ỹ (0)
i to be the diagnosed status),

Ii is a vector of indices identifying the pool tests that the ith individual is a part of,

k(i) is the clinic that the ith individual visited, |Ii| is the cardinality of Ii, and O is a

vector of unused values to complete the dimensions of the matrix.

X: Matrix of covariates for the fixed effects, defined in Section 2. The ith row contains

the covariates for the ith individual.

Z: Matrix of covariates for the random effects, defined in Section 2. The ith row contains

the covariates for the ith individual.

Se: Vector of test sensitivities of the form (Se(1), Se(2), ..., Se(M)). These are used as the

true values if the assay accuracies are known and are used as initial values if assay

accuracies are not known and are to be estimated.

Sp: Vector of test specificities of the form (Sp(1), Sp(2), ..., Sp(M)). These are used as the

true values if the assay accuracies are known and are used as initial values if assay

accuracies are not known and are to be estimated.

link: Specifies which link function is used; can be probit link or logistic link, with probit

link as default.

thin: Specifies the thinning value of the chain; default is 50.

iters: Number of MCMC samples.

est.error: Logical; default TRUE indicates to estimate assay accuracies, FALSE otherwise.

verbose: Logical; TRUE indicates that a figure depicting posterior samples of β and λ is dis-

played during the MCMC, default FALSE otherwise.

Outputs for Dirac: The output from this function is a list object that contains the following:
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beta: Matrix of samples of the fixed effects.

lambda: Matrix of samples of λ.

a: Matrix of samples of a.

v: Matrix of samples of v.

w: Matrix of samples of w.

b: Array of samples of b.

se: Matrix of samples of Se.

sp: Matrix of samples of Sp.

D: Array of samples of D.

Outputs for SSVS: The output from this function is a list object that, in addition to Dirac’s output, contains

the following:

tau v: Matrix of samples of mixing weights (τv1 , τv2 , ..., τvq1 ).

tau w: Matrix of samples of mixing weights (τw1
, τw2

, ..., τwq2
).

Outputs for NMIG: The output from this function is a list object that, in addition to Dirac’s and SSVS’s

output, contains the following:

phisq: Matrix of samples of variance components (φ21, φ
2
2, ..., φ

2
q1).

psisq: Matrix of samples of variance components (ψ2
1 , ψ

2
2 , ..., ψ

2
q2).

[Table 12 about here.]

[Table 13 about here.]

[Table 14 about here.]

[Table 15 about here.]

[Table 16 about here.]

[Table 17 about here.]

[Figure 6 about here.]

[Table 18 about here.]

[Table 19 about here.]
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Appendix B Supplementary Material for Chapter 3

B.1 Full conditional distributions and posterior sampling

Herein we provide the specific form of each full conditional distribution when the probit link is

utilized. We then outline the step-by-step implementation of the posterior sampling algorithm under the

Dirac spike. Throughout, we make use of the following notation:

Xi = diag(x′i1, ...,x
′
iD)

Ti = diag(t′i1, ..., t
′
iD)

V = diag(V1, ...,VD)

A = diag(A1, ...,AD)

b(i) = (b′(i)1, ...,b
′
(i)D)′.

Full conditional of ωi: By inspection of the fully augmented likelihood function

π(Z, Ỹ,ω | β,λ,a,b,R) =

D∏
d=1

J∏
j=1

{
S
Zjd

ej :d
(1− Sej :d)1−Zjd

}Z̃jd
{
S
1−Zjd

pj :d
(1− Spj :d)Zjd

}1−Z̃jd

×
N∏
i=1

|R|−1/2 exp

{
−1

2
(ωi − ηi)′R−1(ωi − ηi)

} N∏
i=1

f(ωi),

where f(ωi) =
∏D
d=1 I(ωid ≥ 0, Ỹid = 1) + I(ωid < 0, Ỹid = 0), it can be seen that the full conditional

distribution of ωi is multivariate truncated normal with mean ωi and covariance matrix R on the feasible

regionR given by the hypercube RD whose dth dimension is truncated below(above) by 0 if Ỹid = 1(0); i.e.,

ωi | Ỹi,β,λ,a,b(i) ∼ TN(ηi,R,R).

Full conditional of β: The full conditional distribution of βrd is degenerate at 0 if vrd = 0, while the nonzero

elements of β, say βv , have the following normal full conditional distribution

βv | Ỹ,ω,λ,a,b,v ∼ N(µβ,Σβ),
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where the mean and covariance matrix are

µβ =

(
Φ(v)−1 +

N∑
i=1

Xi(v)′R−1Xi(v)

)−1
×

N∑
i=1

Xi(v)′R−1ω?βi

Σβ =

(
Φ(v)−1 +

N∑
i=1

Xi(v)′R−1Xi(v)

)−1
,

and Φ = diag(φ2rd; r = 1, ..., pd, d = 1, ..., D), Φ(v) is the matrix of rows and columns of Φ corresponding

to non-zero elements of v, Xi(v) is the columns of Xi corresponding to non-zero elements of v, and ω?βi =

ωi −TiVAb(i).

Full conditional ofλ: Define for individual i a qd×1 vector eid whose lth element is tidlb(i)dl+tidl
∑l−1
m=1 b(i)dmadlm,

where tidl is the lth entry of tid, b(i)dl is the lth entry of b(i)d, and adlm is the (l,m)th entry of Ad. Construct

Ei = diag(e′i1, ..., e
′
iD)′. Then the full conditional distribution of λld is degenerate at 0 if wld = 0, while the

`th nonzero element of λ, say λ`, has full conditional distribution

λ` | Ỹ,ω,β,λ−`,a,b ∼ TN{µλ`
, σ2
λ`
, (0,∞)},

where the mean and variance are given by

µλ`
=

(
1/Ψ`` +

N∑
i=1

E`′

i R−1E`
i

)−1
×

N∑
i=1

E`′

i R−1ω?λ`i

σ2
λ`

=

(
1/Ψ`` +

N∑
i=1

E`′

i R−1E`
i

)−1
,

and E`
i is the `th column of Ei, Ψ`` is the `th diagonal element of Ψ = diag(ψ2

ld; l = 1, ..., qd, d = 1, ..., D),

ω?λ`i
= ωi −Xiβ −E−`i λ−`, and E−`i is the matrix Ei after removing the `th column.

Full conditional of a: Define the qd × (qd − 1)/2 vector uid = (b(i)dlλdmtid,m; l = 1, ..., qd − 1,m =

l + 1, ..., qd)
′, where b(i)dl is the lth element of b(i)d, λdm is the mth element of λd, and tid,m is the mth

element of tid. Then, the linear predictor ηid becomes

x′idβd + t′idΛdAdb(i)d = x′idβ + t′idΛdb(i)d + u′idad.
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Construct Ui = diag(u′i1, ...,u
′
iD)′. Then the full conditional distribution of a is given by

a | Ỹ,ω,β,λ,b ∼ N(µa,Σa)

where the mean and covariance matrix are

µa =

(
C−1 +

N∑
i=1

U′iR
−1Ui

)−1
×

(
C−1m +

N∑
i=1

U′iR
−1ω?ai

)

Σa =

(
C−1 +

N∑
i=1

U′iR
−1Ui

)−1
,

and ω?ai = ωi −Xiβ −TiΛb(i), C = diag(C1, ...,CD), and m = (m1, ...,mD)′.

Full conditional of bk: Define the index set Sk = {i : b(i) = bk}; i.e., the index set of individuals who

visited site k. Then the full conditional distribution of bk is given by

bk | Ỹ,ω,β,λ,a ∼ N(µbk
,Σbk

),

where the mean and covariance matrix are

µbk
=

(
I +

∑
i∈Sk

A′ΛT′iR
−1TiΛA

)−1
×
∑
i∈Sk

A′ΛT′iR
−1ω?bki

Σbk
=

(
I +

∑
i∈Sk

A′ΛT′iR
−1TiΛA

)−1
,

and ω?bki
= ωi −Xiβ.

Full conditional of vrd: Under the Dirac spike, v should be sampled from its marginal posterior, which is

obtained after integrating over β; i.e.,

π(v | Ỹ,ω,λ,a,b) ∝ π(v)

∫
π(Z, Ỹ,ω | β,λ,a,b)π(β | v)dβ

∝ π(v)π(Z, Ỹ,ω | λ,a,b,v),

where

π(Z, Ỹ,ω | λ,a,b,v) ∝ |Φ(v)|−1/2|Σβ|1/2 exp

{
−1

2

[
N∑
i=1

ω?′βiR
−1ω?βi − µ′βΣ−1β µβ

]}
.
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Here, Φ(v), Σβ, µβ, and ω?βi are defined in the full conditional of β outlined above. It is worth noting that

if v = 0, then this marginalized likelihood reduces to exp
{
− 1

2

∑N
i=1 ω

?′
βiR

−1ω?βi

}
. Thus, it is easy to see

that the full conditional distribution of vrd, after marginalizing over β, is Bernoulli, with success probability

pvrd ; i.e., vrd | Ỹ,ω,λ,a,b,v−rd, τvrd ∼ Bernoulli(pvrd), where v−rd is the vector v after removing the

rth element of vd and

pvrd =
π(Z, Ỹ,ω | λ,a,b,v−rd, vrd = 1)τvrd

π(Z, Ỹ,ω | λ,a,b,v−rd, vrd = 0)(1− τvrd) + π(Z, Ỹ,ω | λ,a,b,v−rd, vrd = 1)τvrd
.

Full conditional of wld: Assume wld is the `th entry of w, call it w`. Under the Dirac spike, w` should be

sampled from its marginal posterior, which is obtained after integrating over λ` := λld; that is, sample from

π(w` | Ỹ,ω,β,λ−ld,a,b) ∝ π(w`)

∫
π(Z, Ỹ,ω | β,λ,a,b)π(λ` | w`)dλ`

∝ π(w`)π(Z, Ỹ,ω | β,λ−ld,a,b, w`),

where λ−ld is the vector λ with the lth element of λd removed and

π(Z, Ỹ,ω | β,λ−ld,a,b, w`) ∝
σλ`

(1− Φ(−µλ`
/σλ`

))

ψld(1− 1/2)
exp

{
−1

2

[
N∑
i=1

ω?λ`i
′R−1ω?λ`i

− µ2
λ`
/σ2

λ`

]}
.

Here, all notation has been defined in the full conditional distribution of λ. Note that when wld = 0, then

this marginalized likelihood reduces to exp
{
− 1

2

∑N
i=1 ω

?′
λ`i

R−1ω?λ`i

}
. Thus, it is easy to see that the

full conditional distribution of wld, after marginalizing over λld, is Bernoulli, with probability pwld
; i.e.,

wld | Ỹ,ω,β,λ−ld,a,b, τwld
∼ Bernoulli(pwld

), where

pwld
=

π(Z, Ỹ,ω | β,λ−ld,a,b, w` = 1)τwld

π(Z, Ỹ,ω | β,λ−ld,a,b, w` = 0)(1− τwld
) + π(Z, Ỹ,ω | β,λ−ld,a,b, w` = 1)τwld

.

Complete posterior sampling algorithm for multivariate probit link:

1. Initialize β(0),λ(0),a(0),b
(0)
kd ,v

(0),w(0), Ỹ(0), τ
(0)
vrd , and τ (0)wld . If estimating R, initialize W(0),D(0),

and R(0). If estimating testing assay accuracies, initialize Se(m):d and Sp(m):d. Set t = 1.

2. For i = 1, ..., N , sample ω(t)
i ∼ TN(ηi,R

(t−1),R), where ηi is evaluated at β(t−1), λ(t−1), a(t−1),

and b
(t−1)
(i) , andR is evaluated at Ỹ

(t−1)
i . Aggregate ω(t) = (ω

(t)
1 , ...,ω

(t)
N )′.

3. Set β(t)
rd = 0 if v(t−1)rd = 0. Sample nonzero β’s from β

(t)
v ∼ N(µβ,Σβ), where the mean and
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covariance matrix are evaluated at λ(t−1), a(t−1), b(t−1), v(t−1), R(t−1), and ω(t).

4. Set λ(t)ld = 0 if w(t−1)
ld = 0. Sample the `th nonzero λ from λ

(t)
` ∼ TN{µλ`

, σ2
λ`
, (0,∞)}, where the

mean and variance are evaluated atβ(t), a(t−1), b(t−1), R(t−1),ω(t), andλ(t)
−` = (λ

(t)
1 , ..., λ

(t)
`−1, λ

(t−1)
`+1 , ..., λ

(t−1)
L )′;

i.e., there are a total of L nonzero λ’s being sampled. Aggregate λ(t) = (λ
(t)
1 , ...,λ

(t)
D )′.

5. Sample a(t) ∼ N(µa,Σa), where the mean and covariance matrix are evaluated at β(t), λ(t), b(t−1),

R(t−1), and ω(t).

6. For k = 1, ...,K, sample b
(t)
k ∼ N(µbk

,Σbk
), where the mean and covariance matrix are evaluated

at β(t), λ(t), a(t), and ω(t). Aggregate b(t) = (b
(t)
1 , ...,b

(t)
K )′.

7. For r = 1, ..., pd and d = 1, ..., D, sample v(t)rd ∼ Bernoulli(pvrd), where pvrd is evaluated at λ(t),

a(t), b(t), v(t)−rd, R(t−1), ω(t), and τ (t−1)vrd . Here, v(t)−rd uses the tth iteration values of vr0d0 if r0 < r

and d0 < d, and (t− 1) otherwise. Aggregrate v(t) = (v
(t)
1 , ...,v

(t)
D )′.

8. For l = 1, ..., qd and d = 1, ..., D, sample w(t)
ld ∼ Bernoulli(pwld

), where pwld
is evaluated at β(t),

λ
(t)
−ld, a(t), b(t), R(t−1), ω(t), and τ (t−1)wld . Here, λ(t)

−ld uses the tth iteration of λl0d0 if l0 < l and

d0 < d, and (t− 1) otherwise.

9. For r = 1, ..., pd, l = 1, ..., qd, and d = 1, ..., D, sample τ (t)vrd ∼ Beta(av + v
(t)
rd , 1 − v

(t)
rd + bv) and

τ
(t)
wld ∼ Beta(aw + w

(t)
ld , 1− w

(t)
ld + bw).

10. If estimating testing assay accuracies, then sample S(t)
e(m):d ∼ Beta(a?e(m):d, b

?
e(m):d) and S(t)

p(m):d ∼

Beta(a?p(m):d, b
?
p(m):d) for m = 1, ...,M , where a?e(m):d, b

?
e(m):d, a

?
p(m):d, and b?p(m):d are evaluated at

Ỹ(t−1). Aggregate S
(t)
e = (S

(t)
e1 , ...,S

(t)
eD)′ and S

(t)
p = (S

(t)
p1 , ...,S

(t)
pD)′, where S

(t)
ed = (S

(t)
e(1):d, ..., S

(t)
e(M):d)

′

and S
(t)
pd = (S

(t)
p(1):d, ..., S

(t)
p(M):d)

′.

11. For i = 1, ..., N and d = 1, ..., D, sample Ỹ (t)
id ∼ Bernoulli{p?id1/(p?id0 + p?id1)}, where p?id0 and p?id1

are evaluated at Ỹ (t)
i1 , ..., Ỹ

(t)
i,d−1, Ỹ

(t−1)
i,d+1 , ..., Ỹ

(t−1)
iD , β(t), λ(t), a(t), b

(t)
(i), S

(t)
e , and S

(t)
p . Aggregate

Ỹ(t) = (Ỹ
(t)
1 , ..., Ỹ

(t)
N )′.

12. Increment t and return to step 2.
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Figure 6.1: Graphical display of the correlation matrix between the 1232 SNPs in the data application.
Darker shades indicate stronger correlation among genetic variants.
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Figure 6.2: Graphical display of the genetic relatedness matrix C for the 430 rice varieties. Darker shades
indicate varieties that are more genetically similar.
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Figure 6.3: Normal QQ-plot of the residuals from the GGDP model (red line) and the GDP model (black
line) for the rice data.
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Figure 6.4: Histogram depicting the natural logarithm of the Bayes factors which were computed for each of
495,532 SNPs available in the CRC data.
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Figure 6.5: Plot of the natural logarithm of the Bayes factors which were computed for each of 495,532
SNPs verses their position in the genome. Each shade change represents the transition to a new chromosome
and the black triangles above the horizontal line depict the 200 SNPs with the largest Bayes factors.
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Figure 6.6: The left (right) figure depicts the posterior infection probabilities for all individuals from the
Iowa chlamydia data corresponding to the analysis from Table 6.3 (Table 6.17) in the dissertation. The blue
(red) points depict individuals who were diagnosed to be negative (positive).
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Table 6.1: Simulation results with known assay accuracies (Sej = 0.95 and Spj = 0.98) under the Dirac
spike. This summary includes the average bias of the posterior mean estimates (Bias), sample standard
deviation of the posterior mean estimates (SSD), and the posterior probability of inclusion (PI). The total
number of individuals is N = 5000 with a common group size of 4. The parameter dij denotes the ijth
element of D.

IT MPT DT AT
Parameter Bias SSD PI Bias SSD PI Bias SSD PI Bias SSD PI
β0 = -3 -0.06 0.27 1.00 0.10 0.40 1.00 -0.03 0.23 1.00 -0.02 0.22 1.00
β1 = -1.5 -0.01 0.20 1.00 0.08 0.27 1.00 -0.01 0.19 1.00 -0.01 0.19 1.00
β2 = 0.5 0.04 0.12 0.99 0.00 0.16 0.99 0.02 0.09 0.99 0.01 0.08 0.99
β3 = 0.25 0.00 0.06 0.99 -0.05 0.11 0.77 0.00 0.05 0.99 0.00 0.05 0.99
β4 = 0 0.00 0.01 0.03 0.00 0.02 0.04 0.00 0.01 0.03 0.00 0.01 0.03
β5 = 0 0.00 0.01 0.03 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.03
λ1 = 1 -0.01 0.32 0.93 -0.10 0.40 0.88 0.03 0.21 0.98 0.03 0.18 0.99
λ2 = 0.75 0.01 0.15 0.98 -0.13 0.32 0.80 0.04 0.11 0.99 0.02 0.10 1.00
λ3 = 0.25 -0.07 0.17 0.56 -0.16 0.18 0.21 -0.06 0.14 0.66 -0.06 0.13 0.69
λ4 = 0 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01
λ5 = 0 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01
λ6 = 0 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01
d11 = 1 0.13 0.52 – 0.03 0.67 – 0.14 0.41 – 0.13 0.38 –
d22 = 1.125 0.07 0.40 – -0.13 0.63 – 0.10 0.34 – 0.06 0.31 –
d33 = 0.109 0.03 0.18 – -0.01 0.21 – 0.01 0.11 – 0.00 0.08 –
d21 = 0.75 0.01 0.37 – -0.12 0.52 – 0.04 0.30 – 0.03 0.27 –
d31 = 0.125 -0.07 0.08 – -0.11 0.06 – -0.05 0.08 – -0.05 0.08 –
d32 = 0.225 -0.07 0.16 – -0.14 0.17 – -0.06 0.13 – -0.06 0.12 –
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Table 6.2: Simulation results with unknown assay accuracies under the Dirac spike. This summary includes
the average bias of the posterior mean estimates (Bias), sample standard deviation of the posterior mean
estimates (SSD), and the posterior probability of inclusion (PI). The total number of individuals is
N = 5000 with a common group size of 4. The parameter dij denotes the ijth element of D.

DT AT
Parameter Bias SSD PI Bias SSD PI
β0 = -3 -0.05 0.23 1.00 -0.04 0.21 1.00
β1 = -1.5 -0.04 0.19 1.00 -0.03 0.18 1.00
β2 = 0.5 0.03 0.09 0.99 0.01 0.09 0.99
β3 = 0.25 0.01 0.05 0.99 0.00 0.04 0.99
β4 = 0 0.00 0.01 0.03 0.00 0.01 0.03
β5 = 0 0.00 0.01 0.03 0.00 0.01 0.03
λ1 = 1 0.04 0.23 0.98 0.03 0.19 0.99
λ2 = 0.75 0.04 0.13 0.99 0.03 0.11 0.99
λ3 = 0.25 -0.05 0.14 0.68 -0.05 0.13 0.71
λ4 = 0 0.00 0.00 0.01 0.00 0.00 0.01
λ5 = 0 0.00 0.00 0.01 0.00 0.00 0.01
λ6 = 0 0.00 0.00 0.01 0.00 0.00 0.01
d11 = 1 0.17 0.44 – 0.14 0.38 –
d22 = 1.125 0.13 0.37 – 0.07 0.33 –
d33 = 0.109 0.02 0.13 – 0.01 0.09 –
d21 = 0.75 0.05 0.33 – 0.03 0.28 –
d31 = 0.125 -0.05 0.08 – -0.06 0.08 –
d32 = 0.225 -0.05 0.14 – -0.06 0.12 –
Se(1) = 0.95 -0.02 0.03 – 0.00 0.01 –
Se(2) = 0.98 -0.01 0.01 – 0.00 0.01 –
Sp(1) = 0.98 0.00 0.01 – 0.00 0.00 –
Sp(2) = 0.99 0.00 0.01 – 0.00 0.01 –
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Table 6.3: Analysis of the Iowa chlamydia data. This summary includes the posterior mean estimate
(Estimate), posterior standard deviation estimate (ESD), and the posterior probability of inclusion (PI). The
unstandardized effect estimate (β∗) is reported.

Parameter Description Estimate ESD PI
β?0 Intercept -0.508 0.109 1.00
β?1 Age -0.037 0.004 1.00
β?2 Race -0.164 0.061 0.93
β?3 New partner 0.145 0.050 0.94
β?4 Multiple partners 0.137 0.093 0.74
β?5 Contact with STD 0.732 0.067 1.00
β?6 Symptoms 0.029 0.055 0.24
λ1 Intercept 0.174 0.036 1.00
λ2 Age 0.000 0.001 0.01
λ3 Race 0.000 0.001 0.00
λ4 New partner 0.003 0.017 0.03
λ5 Multiple partners 0.000 0.002 0.01
λ6 Contact with STD 0.000 0.000 0.00
λ7 Symptoms 0.000 0.000 0.01
Se(1) Swab individual 0.998 0.002 –
Se(2) Urine individual 0.792 0.090 –
Se(3) Swab pool 0.909 0.062 –
Sp(1) Swab individual 0.979 0.007 –
Sp(2) Urine individual 0.987 0.007 –
Sp(3) Swab pool 0.999 0.001 –
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Table 6.4: Simulation results with known assay accuracies (Sej :1 = Sej :2 = 0.95 and
Spj :1 = Spj :2 = 0.98). This summary includes the average bias of the posterior mean estimates (Bias),
sample standard deviation of the posterior mean estimates (SSD), and the posterior probability of inclusion
(PI). The total number of individuals is N = 5000 with a common group size of 4. The average prevalence
rate p for each disease is reiterated.

IT MPT DT AT
Parameter Bias SSD PI Bias SSD PI Bias SSD PI Bias SSD PI

D
is

ea
se

on
e

(p
=

0.
03

)

β11 = -4 -0.51 0.87 1.00 -0.48 0.77 1.00 -0.23 0.46 1.00 -0.13 0.39 1.00
β21 = -1.5 -0.20 0.38 0.99 -0.17 0.37 0.99 -0.07 0.25 1.00 -0.02 0.23 1.00
β31 = 0.5 0.03 0.20 0.90 0.03 0.23 0.88 0.06 0.15 0.97 0.05 0.23 0.98
β41 = 0.25 -0.07 0.15 0.56 -0.12 0.15 0.39 -0.04 0.12 0.72 -0.04 0.13 0.77
β51 = 0 0.00 0.01 0.02 0.00 0.02 0.03 0.00 0.01 0.02 0.00 0.11 0.02
λ11 = 1 0.25 0.45 1.00 0.23 0.44 1.00 0.16 0.31 1.00 0.12 0.27 1.00
λ21 = 0.75 -0.06 0.33 0.83 -0.11 0.38 0.76 0.05 0.17 0.98 0.04 0.14 0.99
λ31 = 0.25 -0.12 0.20 0.29 -0.14 0.18 0.23 -0.15 0.16 0.26 -0.15 0.14 0.28
λ41 = 0 0.02 0.05 0.07 0.02 0.05 0.06 0.01 0.03 0.04 0.00 0.02 0.03
λ51 = 0 0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.01

D
is

ea
se

tw
o

(p
=

0.
09

)

β12 = -2.5 -0.16 0.22 1.00 -0.25 0.26 1.00 -0.12 0.19 1.00 -0.11 0.18 1.00
β22 = 1 0.07 0.11 1.00 0.12 0.13 0.99 0.05 0.10 1.00 0.05 0.09 1.00
β32 = -0.75 -0.06 0.08 1.00 -0.06 0.11 0.99 -0.05 0.07 1.00 -0.05 0.07 1.00
β42 = 0.3 0.00 0.05 0.99 -0.02 0.09 0.93 0.00 0.04 0.99 0.00 0.04 0.99
β52 = 0 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
β62 = 0 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01
λ12 = 0.8 0.20 0.19 1.00 0.29 0.22 1.00 0.16 0.17 1.00 0.15 0.15 1.00
λ22 = 0.3 -0.03 0.17 0.70 -0.11 0.22 0.41 -0.01 0.15 0.79 0.01 0.13 0.86
λ32 = 0.15 -0.12 0.06 0.12 -0.12 0.07 0.08 -0.12 0.07 0.13 -0.12 0.07 0.14
λ42 = 0 0.00 0.01 0.02 0.00 0.02 0.03 0.00 0.01 0.01 0.00 0.01 0.01
λ52 = 0 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.01
λ62 = 0 0.00 0.01 0.01 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.01
ρ = 0.99 -0.87 0.04 – -0.96 0.01 – -0.74 0.05 – -0.63 0.06 –
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Table 6.5: Simulation results with unknown assay accuracies. This summary includes the average bias of the
posterior mean estimates (Bias), sample standard deviation of the posterior mean estimates (SSD), and the
posterior probability of inclusion (PI). The total number of individuals is N = 5000 with a common group
size of 4. The average prevalence rate p for each disease is reiterated.

DT AT
Parameter Bias SSD PI Bias SSD PI

D
is

ea
se

on
e

(p
=

0.
0
3

)

β11 = -4 -0.52 0.75 1.00 -0.15 0.41 1.00
β21 = -1.5 -0.21 0.35 1.00 -0.02 0.23 0.99
β31 = 0.5 0.08 0.17 0.95 0.06 0.13 0.97
β41 = 0.25 -0.04 0.13 0.70 -0.04 0.12 0.74
β51 = 0 0.00 0.01 0.02 0.00 0.01 0.01
λ11 = 1 0.21 0.39 1.00 0.12 0.28 1.00
λ21 = 0.75 0.02 0.26 0.92 0.04 0.14 0.98
λ31 = 0.25 -0.14 0.17 0.28 -0.16 0.14 0.27
λ41 = 0 0.01 0.04 0.05 0.00 0.02 0.03
λ51 = 0 0.00 0.01 0.02 0.00 0.01 0.01
Se(1):1 = 0.95 -0.03 0.04 – 0.00 0.03 –
Se(2):1 = 0.98 -0.03 0.02 – -0.06 0.03 –
Sp(1):1 = 0.98 -0.06 0.04 – -0.03 0.03 –
Sp(2):1 = 0.99 -0.04 0.02 – -0.07 0.03 –

D
is

ea
se

tw
o

(p
=

0.
0
9

)

β12 = -2.5 -0.31 0.50 1.00 -0.17 0.22 1.00
β22 = 1 0.16 0.25 1.00 0.07 0.11 0.99
β32 = -0.75 -0.12 0.18 1.00 -0.06 0.08 0.98
β42 = 0.3 0.02 0.08 0.99 0.01 0.04 0.95
β52 = 0 0.00 0.01 0.01 0.00 0.01 0.01
β62 = 0 0.00 0.01 0.01 0.00 0.01 0.01
λ12 = 0.8 0.29 0.27 1.00 0.19 0.17 1.00
λ22 = 0.3 -0.03 0.16 0.72 -0.02 0.14 0.68
λ32 = 0.15 -0.12 0.07 0.11 -0.12 0.07 0.12
λ42 = 0 0.00 0.02 0.02 0.00 0.01 0.01
λ52 = 0 0.00 0.01 0.01 0.00 0.01 0.01
λ62 = 0 0.00 0.01 0.01 0.00 0.01 0.01
Se(1):2 = 0.95 -0.05 0.07 – -0.01 0.04 –
Se(2):2 = 0.98 -0.04 0.06 – -0.07 0.04 –
Sp(1):2 = 0.98 -0.08 0.07 – -0.04 0.03 –
Sp(2):2 = 0.99 -0.05 0.06 – -0.07 0.04 –
ρ = 0.99 -0.81 0.07 – -0.69 0.07 –
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Table 6.6: Analysis of the Iowa chlamydia data. This summary includes the posterior mean estimate
(Estimate), posterior standard deviation estimate (ESD), and the posterior probability of inclusion (PI).

Parameter Description Estimate ESD PI
G

on
or

rh
ea

β11 Intercept -2.58 0.08 1.00
β12 Age 0.00 0.01 0.01
β13 Race -0.04 0.04 0.31
β14 New partner 0.00 0.01 0.01
β15 Multiple partners 0.00 0.01 0.02
β16 Contact with STD 0.19 0.02 1.00
β17 Symptoms 0.00 0.01 0.01
λ11 Intercept 0.37 0.07 1.00
λ12 Age 0.00 0.01 0.03
λ13 Race 0.05 0.08 0.34
λ14 New partner 0.00 0.02 0.02
λ15 Multiple partners 0.00 0.01 0.02
λ16 Contact with STD 0.00 0.01 0.01
λ17 Symptoms 0.00 0.01 0.01
Se(1):1 Swab individual 0.95 0.01 –
Se(2):1 Urine individual 0.95 0.02 –
Se(3):1 Swab pool 0.95 0.01 –
Sp(1):1 Swab individual 0.98 0.01 –
Sp(2):1 Urine individual 0.99 0.01 –
Sp(3):1 Swab pool 0.98 0.01 –

C
hl

am
yd

ia

β21 Intercept -1.44 0.03 1.00
β22 Age -0.23 0.02 1.00
β23 Race -0.04 0.03 0.60
β24 New partner 0.02 0.03 0.26
β25 Multiple partners 0.03 0.03 0.50
β26 Contact with STD 0.16 0.01 1.00
β27 Symptoms 0.01 0.02 0.11
λ21 Intercept 0.16 0.03 1.00
λ22 Age 0.00 0.01 0.01
λ23 Race 0.00 0.01 0.00
λ24 New partner 0.07 0.05 0.77
λ25 Multiple partners 0.01 0.01 0.01
λ26 Contact with STD 0.00 0.01 0.01
λ27 Symptoms 0.00 0.01 0.00
Se(1):2 Swab individual 0.99 0.01 –
Se(2):2 Urine individual 0.91 0.02 –
Se(3):2 Swab pool 0.99 0.01 –
Sp(1):2 Swab individual 0.99 0.01 –
Sp(2):2 Urine individual 0.99 0.01 –
Sp(3):2 Swab pool 0.99 0.01 –
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Table 6.7: Simulation configuration 1: First set of randomly selected SNPs, for all considered values of σ.
Results were obtained through the GGDP and GDP models, as well as through applying the approach
outlined in Armagan, Dunson, and Lee (2013). Presented results consist of the empirical bias (Bias),
empirical mean-squared error (MSE), and sample standard deviation (SD) of the parameter estimates that
were estimated as non-zero, as well as the percentage of the time that a coefficient was identified as being
significant (Percent). Also included are the percentage of false discoveries (FDP) for each considered
configuration and the average number of iterations the EM algorithm went through before convergence (Iter)
with the average time (measured in seconds) being provided in parenthesis. The minor allele frequency is
also reported (MAF).

GGDP GDP Armagan et al. (2013)
σ Parameter MAF Bias MSE SD Percent Bias MSE SD Percent Bias MSE SD Percent

β0 = 3.00 – 0.017 0.041 0.203 100% 0.008 0.073 0.270 100% -0.052 0.273 0.520 100%
β1 = 3.50 – -0.003 0.001 0.034 100% -0.003 0.001 0.034 100% -0.001 0.001 0.034 100%
β2 = 1.00 – -0.004 0.001 0.034 100% -0.004 0.001 0.034 100% 0.000 0.001 0.034 100%
β3 = 0.25 21% -0.021 0.002 0.043 100% -0.013 0.003 0.048 100% -0.023 0.005 0.068 100%

0.5 β4 = 0.50 13% -0.007 0.002 0.044 100% -0.003 0.003 0.056 100% -0.020 0.008 0.087 100%
β5 = 0.75 11% -0.010 0.002 0.046 100% -0.008 0.003 0.056 100% -0.048 0.012 0.100 100%
β6 = 1.00 20% -0.004 0.001 0.037 100% -0.002 0.002 0.042 100% -0.024 0.007 0.078 100%
β7 = 1.50 13% -0.007 0.002 0.044 100% -0.006 0.003 0.057 100% -0.019 0.010 0.096 100%
β8 = 2.00 10% -0.003 0.001 0.033 100% -0.002 0.002 0.040 100% -0.018 0.004 0.062 100%

Iter: 80(39s) FDP: 0.29% Iter: 152(40s) FDP: 1.34% Iter: 4818(419s) FDP: 26%
β0 = 3.00 – 0.094 0.189 0.424 100% 0.078 0.302 0.544 100% 0.062 1.138 1.066 100%
β1 = 3.50 – -0.008 0.005 0.068 100% -0.010 0.005 0.068 100% 0.001 0.005 0.067 100%
β2 = 1.00 – -0.015 0.005 0.068 100% -0.017 0.005 0.068 100% -0.001 0.005 0.067 100%
β3 = 0.25 21% -0.012 0.004 0.063 46% -0.004 0.007 0.083 67% -0.031 0.015 0.119 92%

1 β4 = 0.50 13% -0.033 0.011 0.098 99% -0.011 0.015 0.121 99% -0.069 0.037 0.178 98%
β5 = 0.75 11% -0.032 0.011 0.098 100% -0.021 0.014 0.119 100% -0.126 0.056 0.200 99%
β6 = 1.00 20% -0.020 0.006 0.072 100% -0.012 0.008 0.088 100% -0.061 0.027 0.151 100%
β7 = 1.50 13% -0.030 0.009 0.092 100% -0.029 0.014 0.117 100% -0.064 0.040 0.188 100%
β8 = 2.00 10% -0.008 0.005 0.068 100% -0.009 0.007 0.083 100% -0.043 0.017 0.122 100%

Iter: 89(39s) FDP: 0.29% Iter: 159(40s) FDP: 1.35% Iter: 5363(470s) FDP: 26%
β0 = 3.00 – 0.372 0.866 0.854 100% 0.302 1.396 1.143 100% 0.363 4.591 2.113 100%
β1 = 3.50 – -0.041 0.021 0.140 100% -0.047 0.022 0.141 100% 0.001 0.019 0.137 100%
β2 = 1.00 – -0.072 0.027 0.149 100% -0.081 0.029 0.150 100% -0.008 0.019 0.138 100%
β3 = 0.25 21% 0.184 0.045 0.107 5% 0.151 0.040 0.131 19% -0.013 0.047 0.217 71%

2 β4 = 0.50 13% 0.069 0.025 0.142 39% 0.095 0.044 0.188 58% -0.054 0.088 0.292 78%
β5 = 0.75 11% -0.033 0.034 0.182 73% -0.003 0.051 0.226 80% -0.194 0.141 0.322 79%
β6 = 1.00 20% -0.086 0.029 0.149 97% -0.043 0.032 0.174 97% -0.168 0.124 0.310 98%
β7 = 1.50 13% -0.097 0.046 0.190 100% -0.086 0.059 0.226 100% -0.146 0.171 0.386 100%
β8 = 2.00 10% -0.027 0.019 0.137 100% -0.018 0.029 0.168 100% -0.100 0.073 0.252 100%

Iter: 94(44s) FDP: 0.30% Iter: 170(45s) FDP: 1.40% Iter: 6257(539s) FDP: 26%
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Table 6.8: Data Application: Results include the estimated field and genetic effects on yield obtained by the
GGDP and GDP models. NS indicates that the SNP was not selected by a particular model and the minor
allele frequency of the selected SNPs is reported (MAF). The prediction error (CVerror) is also provided,
and was computed via 5-fold cross validation.

Term Chr Ref MAF GGDP β GDP β
Intercept 3.302 3.201
F1 3.586 3.499
F2 0.849 0.828
S64 1 C 3% -0.186 -0.257
S262 1 T 14% -0.388 -0.389
S664 4 G 4% NS -0.318
S768 5 A 12% -0.285 -0.267
S838 6 A 12% -0.265 -0.254
S941 7 T 22% -0.180 NS
S1014 8 T 5% 0.515 0.465
S1118 10 T 16% NS 0.234
S1215 12 G 3% 0.199 0.191
CVerror 431.73 443.60
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Table 6.9: Simulation results when n = 200 and q2 ∈ {100, 200, 500}. The summary includes the empirical
bias (Bias) and standard deviation (SD) of the MAP estimates, as well as the percent of times the significant
variable remained in the model (Perc). The SNP coefficients are categorized according to their allelic
frequencies (AF). The empirical false discovery proportion (FDP) for the truly unrelated variables is also
included. The average times required to analyze each data set were 9.1, 12.6, and 46.9 seconds when
q2 = 100, 200, 500, respectively. This time includes the grid search over the various (α, η) settings.

q2 = 100 q2 = 200 q2 = 500

AF Parameter Bias SD Perc Bias SD Perc Bias SD Perc
Non-SNP coefficients

β0 = −1 0.00 0.28 100% -0.05 0.31 100% -0.16 0.36 100%
β1,1 = 1 -0.09 0.32 99% 0.03 0.36 99% 0.13 0.45 99%
β1,2 = 1 -0.06 0.32 99% 0.02 0.34 99% 0.11 0.41 99%

SNP coefficients
β2,1 = 0.25 -0.22 0.15 6% -0.24 0.09 3% -0.25 0.02 1%
β2,2 = 0.25 -0.21 0.15 7% -0.23 0.11 3% -0.24 0.14 3%
β2,3 = 0.5 -0.21 0.33 51% -0.22 0.36 45% -0.29 0.35 31%
β2,4 = 0.5 -0.28 0.32 37% -0.31 0.32 30% -0.38 0.28 18%
β2,5 = 1 -0.08 0.32 99% -0.01 0.38 98% 0.04 0.43 97%

L
ow

β2,6 = 1 -0.10 0.37 96% -0.07 0.43 94% -0.24 0.55 76%
β2,7 = 0.25 -0.16 0.23 16% -0.19 0.18 11% -0.20 0.20 8%
β2,8 = 0.25 -0.13 0.25 22% -0.17 0.22 13% -0.19 0.20 10%
β2,9 = 0.5 -0.27 0.32 38% -0.36 0.28 23% -0.46 0.17 8%
β2,10 = 0.5 -0.17 0.35 54% -0.15 0.38 54% -0.19 0.40 43%
β2,11 = 1 -0.21 0.39 92% -0.44 0.53 60% -0.53 0.54 51%

H
ig

h

β2,12 = 1 -0.18 0.41 90% -0.25 0.48 80% -0.39 0.57 61%
FDP: 3.6% FDP: 3.2% FDP: 1.8%

98



Table 6.10: Simulation results when n = 500 and q2 ∈ {100, 200, 500}. The summary includes the
empirical bias (Bias) and standard deviation (SD) of the MAP estimates, as well as the percent of times the
significant variable remained in the model (Perc). The SNP coefficients are categorized according to their
allelic frequencies (AF). The empirical false discovery proportion (FDP) for the truly unrelated variables is
also included. The average times required to analyze each data set were 30.2, 36.1, and 85.8 seconds when
q2 = 100, 200, 500, respectively. This time includes the grid search over the various (α, η) settings.

q2 = 100 q2 = 200 q2 = 500

AF Parameter Bias SD Perc Bias SD Perc Bias SD Perc
Non-SNP coefficients

β0 = −1 0.05 0.15 100% 0.04 0.16 100% 0.01 0.15 100%
β1,1 = 1 -0.07 0.15 100% -0.07 0.16 100% -0.04 0.17 100%
β1,2 = 1 -0.07 0.15 100% -0.06 0.15 100% -0.03 0.17 100%

SNP coefficients
β2,1 = 0.25 -0.19 0.14 19% -0.22 0.10 9% -0.24 0.05 2%
β2,2 = 0.25 -0.20 0.13 15% -0.21 0.12 11% -0.23 0.08 4%
β2,3 = 0.5 -0.09 0.20 91% -0.12 0.23 83% -0.18 0.24 70%
β2,4 = 0.5 -0.14 0.22 80% -0.17 0.24 73% -0.26 0.25 53%
β2,5 = 1 -0.10 0.17 100% -0.09 0.19 100% -0.09 0.19 100%

L
ow

β2,6 = 1 -0.08 0.16 100% -0.07 0.18 100% -0.10 0.19 99%
β2,7 = 0.25 -0.17 0.15 28% -0.20 0.13 17% -0.22 0.10 11%
β2,8 = 0.25 -0.10 0.18 45% -0.13 0.18 32% -0.17 0.17 22%
β2,9 = 0.5 -0.14 0.21 82% -0.24 0.23 61% -0.37 0.21 32%
β2,10 = 0.5 -0.09 0.20 90% -0.09 0.20 89% -0.09 0.23 84%
β2,11 = 1 -0.14 0.17 100% -0.26 0.34 86% -0.24 0.28 93%

H
ig

h

β2,12 = 1 -0.12 0.19 100% -0.16 0.18 99% -0.17 0.24 98%
FDP: 2.8% FDP: 2.4% FDP: 1.3%
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Table 6.11: Summary of the analysis of the Colorectal cancer data. Presented results include the
chromosome number (Chr) and coordinate (Coordinate) of the identified SNPs, the gene they lie on (Gene),
reference allele (Ref), minor allele frequency (MAF), and estimated effect (Estimate).

Description Chr Coordinate Gene Ref MAF Estimate
Intercept 0.90
Gender 0.00
Age -3.75
BMI 0.00
Smoking 1.32
S3 3 57086348 ARHGEF3 G 0.07 2.40
S19 16 81947156 PLCG2 C 0.08 0.85
S27 10 129963848 intergenic C 0.34 -1.32
S51 5 98125016 RGMB G 0.05 1.95
S58 18 59822981 PIGN TC 0.19 -1.39
S118 5 164113078 intergenic T 0.12 1.65
S128 6 77328692 intergenic A 0.04 1.22
S154 17 45800299 intergenic T 0.36 1.32
S172 16 13018917 SHISA9 C 0.11 1.67
S200 3 12816282 intergenic A 0.03 2.13
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Table 6.12: Simulation results with known assay accuracies (Sej = 0.95 and Spj = 0.98) under SSVS. This
includes the average bias of the posterior mean estimates (Bias), sample standard deviation of the posterior
mean estimates (SSD), and the posterior probability of inclusion (PI). The total number of individuals is
N = 5000 with a common group size of 4. The parameter dij denotes the ijth element of D.

IT MPT DT AT
Parameter Bias SSD PI Bias SSD PI Bias SSD PI Bias SSD PI
β0 = -3 -0.08 0.26 1.00 -0.08 0.30 1.00 -0.03 0.22 1.00 -0.02 0.21 1.00
β1 = -1.5 -0.01 0.20 1.00 -0.02 0.23 1.00 -0.02 0.18 1.00 0.00 0.18 1.00
β2 = 0.5 0.02 0.09 0.99 0.04 0.14 0.97 0.02 0.08 0.99 0.01 0.08 0.99
β3 = 0.25 -0.02 0.07 0.76 -0.05 0.10 0.58 -0.01 0.06 0.80 -0.01 0.06 0.81
β4 = 0 0.00 0.03 0.03 0.00 0.03 0.03 0.00 0.03 0.03 0.00 0.03 0.02
β5 = 0 0.00 0.03 0.03 0.00 0.03 0.03 0.00 0.03 0.02 0.00 0.03 0.02
λ1 = 1 0.06 0.20 0.99 -0.02 0.32 0.93 0.01 0.18 0.99 0.02 0.18 0.99
λ2 = 0.75 0.05 0.11 0.99 0.04 0.13 0.99 0.03 0.11 1.00 0.01 0.11 1.00
λ3 = 0.25 -0.03 0.09 0.61 -0.04 0.13 0.49 -0.03 0.09 0.62 -0.04 0.09 0.62
λ4 = 0 0.04 0.01 0.04 0.05 0.02 0.06 0.04 0.01 0.03 0.04 0.01 0.03
λ5 = 0 0.04 0.01 0.03 0.04 0.01 0.04 0.04 0.01 0.03 0.04 0.01 0.03
λ6 = 0 0.04 0.01 0.03 0.04 0.01 0.04 0.04 0.01 0.03 0.04 0.01 0.03
d11 = 1 0.21 0.45 – 0.14 0.57 – 0.09 0.36 – 0.11 0.39 –
d22 = 1.125 0.14 0.36 – 0.11 0.44 – 0.08 0.33 – 0.02 0.32 –
d33 = 0.109 0.02 0.09 – 0.04 0.15 – 0.01 0.08 – 0.00 0.07 –
d21 = 0.75 0.07 0.31 – 0.01 0.39 – 0.01 0.28 – 0.00 0.27 –
d31 = 0.125 -0.03 0.08 – -0.06 0.08 – -0.03 0.07 – -0.03 0.07 –
d32 = 0.225 -0.03 0.10 – -0.06 0.14 – -0.03 0.10 – -0.04 0.09 –
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Table 6.13: Simulation results with known assay accuracies (Sej = 0.95 and Spj = 0.98) under NMIG.
This includes the average bias of the posterior mean estimates (Bias), sample standard deviation of the
posterior mean estimates (SSD), and the posterior probability of inclusion (PI). The total number of
individuals is N = 5000 with a common group size of 4. The parameter dij denotes the ijth element of D.

IT MPT DT AT
Parameter Bias SSD PI Bias SSD PI Bias SSD PI Bias SSD PI
β0 = -3 -0.06 0.26 1.00 -0.07 0.30 1.00 -0.03 0.22 1.00 -0.04 0.21 1.00
β1 = -1.5 -0.02 0.21 1.00 -0.02 0.22 1.00 -0.01 0.19 1.00 -0.01 0.18 1.00
β2 = 0.5 0.02 0.10 0.99 0.04 0.14 0.97 0.02 0.08 0.99 0.01 0.08 0.99
β3 = 0.25 -0.02 0.07 0.73 -0.05 0.10 0.56 -0.01 0.06 0.76 -0.01 0.06 0.78
β4 = 0 0.00 0.03 0.03 0.00 0.03 0.04 0.00 0.03 0.03 0.00 0.03 0.03
β5 = 0 0.00 0.03 0.03 0.00 0.03 0.04 0.00 0.03 0.03 0.00 0.03 0.03
λ1 = 1 0.02 0.19 0.99 -0.02 0.31 0.93 0.02 0.17 0.99 0.02 0.17 0.99
λ2 = 0.75 0.03 0.11 0.99 0.04 0.13 0.99 0.03 0.10 0.99 0.03 0.10 0.99
λ3 = 0.25 -0.03 0.10 0.59 -0.03 0.13 0.50 -0.03 0.09 0.62 -0.03 0.09 0.63
λ4 = 0 0.04 0.01 0.04 0.05 0.02 0.06 0.04 0.01 0.04 0.04 0.01 0.03
λ5 = 0 0.04 0.01 0.03 0.04 0.02 0.04 0.04 0.01 0.03 0.04 0.01 0.03
λ6 = 0 0.04 0.01 0.03 0.04 0.01 0.04 0.03 0.01 0.03 0.03 0.01 0.03
d11 = 1 0.12 0.39 – 0.13 0.56 – 0.10 0.37 – 0.10 0.36 –
d22 = 1.125 0.08 0.35 – 0.11 0.42 – 0.07 0.32 – 0.05 0.32 –
d33 = 0.109 0.01 0.09 – 0.04 0.16 – 0.01 0.07 – 0.01 0.07 –
d21 = 0.75 0.01 0.28 – 0.00 0.38 – 0.01 0.27 – 0.00 0.26 –
d31 = 0.125 -0.04 0.08 – -0.06 0.07 – -0.03 0.07 – -0.03 0.07 –
d32 = 0.225 -0.04 0.11 – -0.05 0.14 – -0.04 0.09 – -0.03 0.09 –
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Table 6.14: Average estimated area under the receiver operator characteristic curve for the proposed model
and the competing model which ignores both variable selection and random effects. The known assay
accuracies (Sej = 0.95 and Spj = 0.98) setting (Known) is provided along with unknown assay accuracies
(Unk).

Proposed model Competing model
Assay IT MPT DT AT IT MPT DT AT

K
no

w
n SSVS 0.92 0.90 0.93 0.93 0.83 0.83 0.84 0.84

NMIG 0.92 0.90 0.93 0.93 0.84 0.83 0.84 0.84
Dirac 0.92 0.89 0.93 0.93 0.83 0.83 0.84 0.84

U
nk

SSVS – – 0.93 0.93 – – 0.84 0.84
NMIG – – 0.93 0.93 – – 0.84 0.84
Dirac – – 0.93 0.93 – – 0.84 0.84
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Table 6.15: Simulation results with unknown assay accuracies under SSVS. This summary includes the
average bias of the posterior mean estimates (Bias), sample standard deviation of the posterior mean
estimates (SSD), and the posterior probability of inclusion (PI). The total number of individuals is
N = 5000 with a common group size of 4. The parameter dij denotes the ijth element of D.

DT AT
Parameter Bias SSD PI Bias SSD PI
β0 = -3 -0.07 0.22 1.00 -0.06 0.21 1.00
β1 = -1.5 -0.07 0.19 1.00 -0.04 0.18 1.00
β2 = 0.5 0.02 0.08 0.99 0.02 0.08 0.99
β3 = 0.25 -0.01 0.06 0.82 -0.01 0.06 0.82
β4 = 0 0.00 0.03 0.02 0.00 0.03 0.02
β5 = 0 0.00 0.03 0.02 0.00 0.03 0.02
λ1 = 1 0.05 0.18 0.99 0.02 0.17 0.99
λ2 = 0.75 0.05 0.10 1.00 0.04 0.11 1.00
λ3 = 0.25 -0.03 0.09 0.62 -0.03 0.09 0.64
λ4 = 0 0.04 0.01 0.03 0.04 0.01 0.03
λ5 = 0 0.04 0.01 0.03 0.04 0.01 0.03
λ6 = 0 0.04 0.01 0.03 0.04 0.01 0.03
d11 = 1 0.16 0.39 – 0.11 0.37 –
d22 = 1.125 0.14 0.33 – 0.08 0.32 –
d33 = 0.109 0.01 0.08 – 0.01 0.07 –
d21 = 0.75 0.06 0.28 – 0.01 0.26 –
d31 = 0.125 -0.03 0.07 – -0.03 0.06 –
d32 = 0.225 -0.03 0.09 – -0.03 0.09 –
Se(1) = 0.95 -0.02 0.03 – 0.00 0.01 –
Se(2) = 0.98 -0.01 0.01 – 0.00 0.01 –
Sp(1) = 0.98 0.00 0.01 – 0.00 0.00 –
Sp(2) = 0.99 0.00 0.00 – 0.00 0.01 –
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Table 6.16: Simulation results with unknown assay accuracies under NMIG. This summary includes the
average bias of the posterior mean estimates (Bias), sample standard deviation of the posterior mean
estimates (SSD), and the posterior probability of inclusion (PI). The total number of individuals is
N = 5000 with a common group size of 4. The parameter dij denotes the ijth element of D.

DT AT
Parameter Bias SSD PI Bias SSD PI
β0 = -3 -0.06 0.23 1.00 -0.04 0.21 1.00
β1 = -1.5 -0.05 0.19 1.00 -0.02 0.18 1.00
β2 = 0.5 0.03 0.09 0.99 0.01 0.08 0.99
β3 = 0.25 -0.01 0.06 0.78 -0.01 0.06 0.78
β4 = 0 0.00 0.03 0.03 0.00 0.03 0.03
β5 = 0 0.00 0.03 0.03 0.00 0.03 0.03
λ1 = 1 0.03 0.18 0.99 0.03 0.17 0.99
λ2 = 0.75 0.05 0.11 0.99 0.03 0.10 0.99
λ3 = 0.25 -0.02 0.09 0.64 -0.03 0.08 0.63
λ4 = 0 0.04 0.01 0.04 0.04 0.01 0.03
λ5 = 0 0.04 0.01 0.03 0.04 0.01 0.03
λ6 = 0 0.04 0.01 0.03 0.03 0.01 0.03
d11 = 1 0.14 0.39 – 0.12 0.36 –
d22 = 1.125 0.12 0.34 – 0.06 0.33 –
d33 = 0.109 0.02 0.08 – 0.01 0.07 –
d21 = 0.75 0.03 0.28 – 0.01 0.27 –
d31 = 0.125 -0.03 0.08 – -0.03 0.07 –
d32 = 0.225 -0.02 0.10 – -0.03 0.09 –
Se(1) = 0.95 -0.02 0.03 – 0.00 0.01 –
Se(2) = 0.98 -0.01 0.01 – 0.00 0.01 –
Sp(1) = 0.98 0.00 0.01 – 0.00 0.00 –
Sp(2) = 0.99 0.00 0.00 – 0.00 0.01 –
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Table 6.17: Analysis of the Iowa chlamydia data when using the Dirac spike and informative priors on the
testing accuracies. The summary includes the posterior mean estimate (Estimate), posterior standard
deviation estimate (ESD), and posterior probability of inclusion (PI). The informative priors were developed
based on the product literature and validation trials available on the Aptima Combo 2 assay and are given
by: Se(1), Se(3) ∼ Beta(196, 13), Se(2) ∼ Beta(198, 12), Sp(1), Sp(3) ∼ Beta(1155, 29), and Sp(2) ∼
Beta(1171, 14). The unstandardized effect estimate (β∗) is reported.

Parameter Description Estimate ESD PI
β?0 Intercept -0.576 0.087 1.00
β?1 Age -0.036 0.003 1.00
β?2 Race -0.159 0.057 0.94
β?3 New partner 0.146 0.044 0.96
β?4 Multiple partners 0.144 0.087 0.79
β?5 Contact with STD 0.724 0.060 1.00
β?6 Symptoms 0.026 0.051 0.23
λ1 Intercept 0.166 0.034 1.00
λ2 Age 0.000 0.000 0.00
λ3 Race 0.000 0.001 0.00
λ4 New partner 0.000 0.001 0.01
λ5 Multiple partners 0.000 0.001 0.01
λ6 Contact with STD 0.000 0.000 0.00
λ7 Symptoms 0.000 0.000 0.00
Se(1) Swab individual 0.982 0.005 –
Se(2) Urine individual 0.937 0.016 –
Se(3) Swab pool 0.944 0.015 –
Sp(1) Swab individual 0.974 0.004 –
Sp(2) Urine individual 0.990 0.002 –
Sp(3) Swab pool 0.989 0.002 –
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Table 6.18: The six models (M1-M6) with the highest posterior probabilities (see Kuo and Mallick; 1998)
under both informative and uninformative prior specifications for the testing accuracies. Here x denotes that
a variable is included in the model and Frequency denotes how often the model is visited.

Uninformative Informative
Description M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

Fi
xe

d
ef

fe
ct

s

Intercept x x x x x x x x x x x x
Age x x x x x x x x x x x x
Race x x x x – x x x x x – x
New partner x x x x x – x x x x x –
Multiple partners x – x – x x x x – – x x
Contact with STD x x x x x x x x x x x x
Symptoms – – x x – – – x – x – –

R
an

do
m

ef
fe

ct
s Intercept x x x x x x x x x x x x

Age – – – – – – – – – – – –
Race – – – – – – – – – – – –
New partner – – – – – x – – – – – –
Multiple partners – – – – – – – – – – – –
Contact with STD – – – – – – – – – – – –
Symptoms – – – – – – – – – – – –
Frequency 0.51 0.16 0.12 0.07 0.03 0.02 0.56 0.13 0.13 0.06 0.03 0.02
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Table 6.19: Robustness study: Summary includes the average bias of the posterior mean estimates (Bias),
sample standard deviation of the posterior mean estimates (SSD), and the posterior probability of inclusion
(PI). The total number of individuals is N = 5000 with a common group size of 4. The parameter dij
denotes the ijth element of D.

DT AT
Parameter Bias SSD PI Bias SSD PI
β0 = -3 -0.06 0.21 1.00 -0.02 0.21 1.00
β1 = -1.5 -0.05 0.18 1.00 0.00 0.18 1.00
β2 = 0.5 0.03 0.08 0.99 0.01 0.08 0.99
β3 = 0.25 0.01 0.04 0.99 0.00 0.04 0.99
β4 = 0 0.00 0.01 0.03 0.00 0.01 0.03
β5 = 0 0.00 0.01 0.03 0.00 0.01 0.03
λ1 = 1 0.06 0.18 0.99 0.03 0.17 0.99
λ2 = 0.75 0.06 0.10 1.00 0.03 0.10 1.00
λ3 = 0.25 -0.03 0.12 0.77 -0.04 0.11 0.78
λ4 = 0 0.00 0.01 0.01 0.00 0.00 0.01
λ5 = 0 0.00 0.00 0.01 0.00 0.00 0.01
λ6 = 0 0.00 0.00 0.01 0.00 0.00 0.01
d11 = 1 0.19 0.38 – 0.11 0.35 –
d22 = 1.125 0.17 0.32 – 0.06 0.31 –
d33 = 0.109 0.02 0.08 – 0.01 0.07 –
d21 = 0.75 0.08 0.27 – 0.01 0.25 –
d31 = 0.125 -0.04 0.08 – -0.05 0.08 –
d32 = 0.225 -0.03 0.12 – -0.04 0.11 –
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